Institute for Basic Biomedical Science

Baltimore, MD, United States

Institute for Basic Biomedical Science

Baltimore, MD, United States
Time filter
Source Type

Ladd-Acosta C.,Institute for Basic Biomedical Science | Hansen K.D.,Institute for Basic Biomedical Science | Briem E.,Institute for Basic Biomedical Science | Briem E.,Johns Hopkins University | And 4 more authors.
Molecular Psychiatry | Year: 2014

Autism spectrum disorders (ASD) are increasingly common neurodevelopmental disorders defined clinically by a triad of features including impairment in social interaction, impairment in communication in social situations and restricted and repetitive patterns of behavior and interests, with considerable phenotypic heterogeneity among individuals. Although heritability estimates for ASD are high, conventional genetic-based efforts to identify genes involved in ASD have yielded only few reproducible candidate genes that account for only a small proportion of ASDs. There is mounting evidence to suggest environmental and epigenetic factors play a stronger role in the etiology of ASD than previously thought. To begin to understand the contribution of epigenetics to ASD, we have examined DNA methylation (DNAm) in a pilot study of postmortem brain tissue from 19 autism cases and 21 unrelated controls, among three brain regions including dorsolateral prefrontal cortex, temporal cortex and cerebellum. We measured over 485 000 CpG loci across a diverse set of functionally relevant genomic regions using the Infinium HumanMethylation450 BeadChip and identified four genome-wide significant differentially methylated regions (DMRs) using a bump hunting approach and a permutation-based multiple testing correction method. We replicated 3/4 DMRs identified in our genome-wide screen in a different set of samples and across different brain regions. The DMRs identified in this study represent suggestive evidence for commonly altered methylation sites in ASD and provide several promising new candidate genes. © 2014 Macmillan Publishers Limited.

Li Y.,Wuhan University | Karuppagounder S.S.,Johns Hopkins University | Karuppagounder S.S.,Adrienne Helis Malvin Medical Research Foundation | Talbot C.C.,Institute for Basic Biomedical science | And 5 more authors.
Neuroscience | Year: 2014

Congenital toxoplasmosis and toxoplasmic encephalitis can be associated with severe neuropsychiatric symptoms. However, which host cell processes are regulated and how Toxoplasma gondii affects these changes remain unclear. MicroRNAs (miRNAs) are small noncoding RNA sequences critical to neurodevelopment and adult neuronal processes by coordinating the activity of multiple genes within biological networks. We examined the expression of over 1000 miRNAs in human neuroepithelioma cells in response to infection with Toxoplasma. MiR-132, a cyclic AMP-responsive element binding (CREB)-regulated miRNA, was the only miRNA that was substantially upregulated by all three prototype Toxoplasma strains. The increased expression of miR-132 was also documented in mice following infection with Toxoplasma. To identify cellular pathways regulated by miR-132, we performed target prediction followed by pathway enrichment analysis in the transcriptome of Toxoplasma-infected mice. This led us to identify 20 genes and dopamine receptor signaling was their strongest associated pathway. We then examined myriad aspects of the dopamine pathway in the striatum of Toxoplasma -infected mice 5. days after infection. Here we report decreased expression of D1-like dopamine receptors (DRD1, DRD5), metabolizing enzyme (MAOA) and intracellular proteins associated with the transduction of dopamine-mediated signaling (DARPP-32 phosphorylation at Thr34 and Ser97). Increased concentrations of dopamine and its metabolites, serotonin (5-HT) and 5-hydroxyindoleacetic acid were documented by HPLC analysis; however, the metabolism of dopamine was decreased and 5-HT metabolism was unchanged. Our data show that miR-132 is upregulated following infection with Toxoplasma and is associated with changes in dopamine receptor signaling. Our findings provide a possible mechanism for how the parasite contributes to the neuropathology of infection. © 2014 IBRO.

Talbot Jr. C.C.,Institute for Basic Biomedical science
Infection and Immunity | Year: 2011

Strain type is one of the key factors suspected to play a role in determining the outcome of Toxoplasma infection. In this study, we examined the transcriptional profile of human neuroepithelioma cells in response to representative strains of Toxoplasma by using microarray analysis to characterize the strain-specific host cell response. The study of neural cells is of interest in light of the ability of Toxoplasma to infect the brain and to establish persistent infection within the central nervous system. We found that the extents of the expression changes varied considerably among the three strains. Neuroepithelial cells infected with Toxoplasma type I exhibited the highest level of differential gene expression, whereas type II-infected cells had a substantially smaller number of genes which were differentially expressed. Cells infected with type III exhibited intermediate effects on gene expression. The three strains also differed in the individual genes and gene pathways which were altered following cellular infection. For example, gene ontology (GO) analysis indicated that type I infection largely affects genes related to the central nervous system, while type III infection largely alters genes which affect nucleotide metabolism; type II infection does not alter the expression of a clearly defined set of genes. Moreover, Ingenuity Pathways Analysis (IPA) suggests that the three lineages differ in the ability to manipulate their host; e.g., they employ different strategies to avoid, deflect, or subvert host defense mechanisms. These observed differences may explain some of the variation in the neurobiological effects of different strains of Toxoplasma on infected individuals. Copyright © 2011, American Society for Microbiology. All Rights Reserved.

Loyo M.,Greater Baltimore Medical Center | Brait M.,Greater Baltimore Medical Center | Kim M.S.,Greater Baltimore Medical Center | Ostrow K.L.,Greater Baltimore Medical Center | And 7 more authors.
International Journal of Cancer | Year: 2011

Nasopharyngeal carcinoma (NPC) is a rare malignancy with unique genetic, viral and environmental characteristic that distinguishes it from other head and neck carcinomas. The clinical management of NPC remains challenging largely due to the lack of early detection strategies for this tumor. In our study, we have sought to identify novel genes involved in the pathogenesis of NPC that might provide insight into this tumor's biology and could potentially be used as biomarkers. To identify these genes, we studied the epigenetics of NPC by characterizing a panel of methylation markers. Eighteen genes were evaluated by quantitative methylation-specific polymerase chain reaction (PCR) in cell lines as well as in tissue samples including 50 NPC tumors and 28 benign nasopharyngeal biopsies. Significance was evaluated using Fisher's exact test and quantitative values were optimized using cut off values derived from receiver-operator characteristic curves. The methylation status of AIM1, APC, CALCA, deleted in colorectal carcinomas (DCC), DLEC, deleted in liver cancer 1 (DLC1), estrogen receptor alpha (ESR), FHIT, KIF1A and PGP9.5 was significantly associated with NPC compared to controls. The sensitivity of the individual genes ranged from 26 to 66% and the specificity was above 92% for all genes except FHIT. The combination of PGP9.5, KIF1A and DLEC had a sensitivity of 84% and a specificity of 92%. Ectopic expression of DCC and DLC1 lead to decrease in colony formation and invasion properties. Our results indicate that methylation of novel biomarkers in NPC could be used to enhance early detection approaches. Additionally, our functional studies reveal previously unknown tumor suppressor roles in NPC. Copyright © 2010 UICC.

Dunigan D.D.,University of Nebraska - Lincoln | Dickerson F.,Sheppard Pratt Health System | Talbot C.C.,Institute for Basic Biomedical science | Gurnon J.R.,University of Nebraska - Lincoln | And 3 more authors.
Proceedings of the National Academy of Sciences of the United States of America | Year: 2014

Chloroviruses (family Phycodnaviridae) are large DNA viruses known to infect certain eukaryotic green algae and have not been previously shown to infect humans or to be part of the human virome. We unexpectedly found sequences homologous to the chlorovirus Acanthocystis turfacea chlorella virus 1 (ATCV-1) in a metagenomic analysis of DNA extracted from human oropharyngeal samples. These samples were obtained by throat swabs of adults without a psychiatric disorder or serious physical illness who were participating in a study that included measures of cognitive functioning. The presence of ATCV-1 DNA was confirmed by quantitative PCR with ATCV-1 DNA being documented in oropharyngeal samples obtained from 40 (43.5%) of 92 individuals. The presence of ATCV-1 DNA was not associated with demographic variables but was associated with a modest but statistically significant decrease in the performance on cognitive assessments of visual processing and visual motor speed. We further explored the effects of ATCV-1 in a mouse model. The inoculation of ATCV-1 into the intestinal tract of 9-11-wk-old mice resulted in a subsequent decrease in performance in several cognitive domains, including ones involving recognition memory and sensory-motor gating. ATCV-1 exposure in mice also resulted in the altered expression of genes within the hippocampus. These genes comprised pathways related to synaptic plasticity, learning, memory formation, and the immune response to viral exposure.

Fuchs P.A.,Institute for Basic Biomedical science | Glowatzki E.,Institute for Basic Biomedical science
Hearing Research | Year: 2015

Type I and type II cochlear afferents differ markedly in number, morphology and innervation pattern. The predominant type I afferents transmit the elemental features of acoustic information to the central nervous system. Excitation of these large diameter myelinated neurons occurs at a single ribbon synapse of a single inner hair cell. This solitary transmission point depends on efficient vesicular release that can produce large, rapid, suprathreshold excitatory postsynaptic potentials. In contrast, the many fewer, thinner, unmyelinated type II afferents cross the tunnel of Corti, turning basally for hundreds of microns to form contacts with ten or more outer hair cells. Although each type II afferent is postsynaptic to many outer hair cells, transmission from each occurs by the infrequent release of single vesicles, producing receptor potentials of only a few millivolts. Analysis of membrane properties and the site of spike initiation suggest that the type II afferent could be activated only if all its presynaptic outer hair cells were maximally stimulated. Thus, the details of synaptic transfer inform the functional distinctions between type I and type II afferents. High efficiency transmission across the inner hair cell's ribbon synapse supports detailed analyses of the acoustic world. The much sparser transfer from outer hair cells to type II afferents implies that these could respond only to the loudest, sustained sounds, consistent with previous reports from in vivo recordings. However, type II afferents could be excited additionally by ATP released during acoustic stress of cochlear tissues. This article is part of a Special Issue entitled . © 2015 Elsevier B.V.

Henderson-MacLennan N.K.,University of California at Los Angeles | Papp J.C.,University of California at Los Angeles | Talbot C.C.,Institute for Basic Biomedical science | McCabe E.R.B.,University of California at Los Angeles | Presson A.P.,University of California at Los Angeles
Molecular Genetics and Metabolism | Year: 2010

Genetic databases contain a variety of annotation errors that often go unnoticed due to the large size of modern genetic data sets. Interpretation of these data sets requires bioinformatics tools that may contribute to this problem. While providing gene symbol annotations for identifiers (IDs) such as microarray probe set, RefSeq, GenBank, and Entrez Gene is seemingly trivial, the accuracy is fundamental to any subsequent conclusions. We examine gene symbol annotations and results from three commercial pathway analysis software (PAS) packages: Ingenuity Pathways Analysis, GeneGO, and Pathway Studio. We compare gene symbol annotations and canonical pathway results over time and among different input ID types. We find that PAS results can be affected by variation in gene symbol annotations across software releases and the input ID type analyzed. As a result, we offer suggestions for using commercial PAS and reporting microarray results to improve research quality. We propose a wiki type website to facilitate communication of bioinformatics software problems within the scientific community. © 2010 Elsevier Inc.

Park T.S.,Johns Hopkins University | Bhutto I.,Johns Hopkins University | Zimmerlin L.,Johns Hopkins University | Huo J.S.,Johns Hopkins University | And 13 more authors.
Circulation | Year: 2014

Background-The generation of vascular progenitors (VPs) from human induced pluripotent stem cells (hiPSCs) has great potential for treating vascular disorders such as ischemic retinopathies. However, long-term in vivo engraftment of hiPSCderived VPs into the retina has not yet been reported. This goal may be limited by the low differentiation yield, greater senescence, and poor proliferation of hiPSC-derived vascular cells. To evaluate the potential of hiPSCs for treating ischemic retinopathies, we generated VPs from a repertoire of viral-integrated and nonintegrated fibroblast and cord blood (CB)-derived hiPSC lines and tested their capacity for homing and engrafting into murine retina in an ischemia-reperfusion model. Methods and Results-VPs from human embryonic stem cells and hiPSCs were generated with an optimized vascular differentiation system. Fluorescence-activated cell sorting purification of human embryoid body cells differentially expressing endothelial/pericytic markers identified a CD31+CD146+ VP population with high vascular potency. Episomal CB-induced pluripotent stem cells (iPSCs) generated these VPs with higher efficiencies than fibroblast-iPSC. Moreover, in contrast to fibroblast-iPSC-VPs, CB-iPSC-VPs maintained expression signatures more comparable to human embryonic stem cell VPs, expressed higher levels of immature vascular markers, demonstrated less culture senescence and sensitivity to DNA damage, and possessed fewer transmitted reprogramming errors. Luciferase transgene-marked VPs from human embryonic stem cells, CB-iPSCs, and fibroblast-iPSCs were injected systemically or directly into the vitreous of retinal ischemia-reperfusion-injured adult nonobese diabetic-severe combined immunodeficient mice. Only human embryonic stem cell- and CB-iPSC-derived VPs reliably homed and engrafted into injured retinal capillaries, with incorporation into damaged vessels for up to 45 days. Conclusions-VPs generated from CB-iPSCs possessed augmented capacity to home, integrate into, and repair damaged retinal vasculature. © 2013 American Heart Association, Inc.

PubMed | Institute for Basic Biomedical science and Eastern Virginia Medical School
Type: | Journal: Scientific reports | Year: 2016

Through both gain- and loss-of-TTF-1 expression strategies, we show that TTF-1 positively regulates vascular endothelial growth factor (VEGF) and that the VEGF promoter element contains multiple TTF-1-responsive sequences. The major signaling receptor for VEGF, i.e VEGFR2, also appears to be under a direct and positive regulation of TTF-1. The TTF-1-dependent upregulation of VEGF was moderately sensitive to rapamycin, implicating a partial involvement of mammalian target of rapamycin (mTOR). However, hypoxia did not further increase the secreted VEGF level of the TTF-1(+) lung cancer cells. The TTF-1-induced VEGF upregulation occurs in both compartments (exosomes and exosome-depleted media (EDM)) of the conditioned media. Surprisingly, the EDM of TTF-1(+) lung cancer cells (designated EDM-TTF-1(+)) displayed an anti-angiogenic activity in the endothelial cell tube formation assay. Mechanistic studies suggest that the increased granulocyte-macrophage colony-stimulating factor (GM-CSF) level in the EDM-TTF-1(+) conferred the antiangiogenic activities. In human lung cancer, the expression of TTF-1 and GM-CSF exhibits a statistically significant and positive correlation. In summary, this study provides evidence that TTF-1 may reprogram lung cancer secreted proteome into an antiangiogenic state, offering a novel basis to account for the long-standing observation of favorable prognosis associated with TTF-1(+) lung adenocarcinomas.

Sinha S.,Stanford University | Thomas D.,Stanford University | Yu L.,Stanford University | Gentles A.J.,Stanford University | And 7 more authors.
Blood | Year: 2015

Acute myeloid leukemia (AML) is associated with deregulation of DNA methylation; however, many cases do not bear mutations in known regulators of cytosine guanine dinucleotide (CpG) methylation. We found that mutations in WT1 , IDH2 , and CEBPA were strongly linked to DNA hypermethylation in AML using a novel integrative analysis of The Cancer Genome Atlas data based on Boolean implications, if-then rules that identify all individual CpG sites that are hypermethylated in the presence of a mutation. Introduction of mutant WT1 (WT1mut) into wild-type AML cells induced DNA hypermethylation, confirming mutant WT1 to be causally associated with DNA hypermethylation. Methylated genes in WT1mut primary patient samples were highly enriched for polycomb repressor complex 2 (PRC2) targets, implicating PRC2 dysregulation in WT1mut leukemogenesis. We found that PRC2 target genes were aberrantly repressed in WT1mut AML, and that expression of mutant WT1 in CD34+ cord blood cells induced myeloid differentiation block. Treatment of WT1mut AML cells with short hairpin RNA or pharmacologic PRC2/ enhancer of zeste homolog 2 (EZH2) inhibitors promoted myeloid differentiation, suggesting EZH2 inhibitors may be active in this AML subtype. Our results highlight a strong association between mutant WT1 and DNA hypermethylation in AML and demonstrate that Boolean implications can be used to decipher mutation-specific methylation patterns that may lead to therapeutic insights. © 2015 by The American Society of Hematology

Loading Institute for Basic Biomedical Science collaborators
Loading Institute for Basic Biomedical Science collaborators