Time filter

Source Type

Friedrich-Wilhelm-Lübke-Koog, Germany

Volkmer R.,Kiepenheuer Institute for Solar Physics | Von Der Luhe O.,Kiepenheuer Institute for Solar Physics | Denker C.,Leibniz Institute for Astrophysics Potsdam | Solanki S.,Max Planck Institute for Solar System Research | And 16 more authors.
Proceedings of SPIE - The International Society for Optical Engineering

With the integration of a 1-meter Cesic primary mirror the GREGOR telescope pre-commissioning started. This is the first time, that the entire light path has seen sunlight. The pre-commissioning period includes testing of the main optics, adaptive optics, cooling system, and pointing system. This time was also used to install a near-infrared grating spectro-polarimeter and a 2D-spectropolarimeter for the visible range as first-light science instruments. As soon as the final 1.5 meter primary mirror is installed, commissioning will be completed, and an extended phase of science verification will follow. In the near future, GREGOR will be equipped with a multi-conjugate adaptive optics system that is presently under development at KIS. © 2010 SPIE. Source

Reiners A.,Institute For Astrophysik Gottingen | Joshi N.,Institute For Astrophysik Gottingen | Goldman B.,Max Planck Institute for Astronomy
Astronomical Journal

We present a catalog of rotation and chromospheric activity in a sample of 334 Mdwarfs of spectral types M0-M4.5 populating the parameter space around the boundary to full convection. We obtain high-resolution optical spectra for 206 targets and determine projected rotational velocity, vsin i, and Hα emission. The data are combined with measurements of vsin i in field stars of the same spectral type from the literature. Our sample adds 157 new rotation measurements to the existing literature and almost doubles the sample of available vsin i. The final sample provides a statistically meaningful picture of rotation and activity at the transition to full convection in the solar neighborhood. We confirm a steep rise in the fraction of active stars at the transition to full convection known from earlier work. In addition, we see a clear rise in rotational velocity in the same stars. In very few stars, no chromospheric activity but a detection of rotational broadening is reported. We argue that all of them are probably spurious detections; we conclude that in our sample all significantly rotating stars are active, and all active stars are significantly rotating. The rotation-activity relation is valid in partially and in fully convective stars. Thus, we do not observe any evidence for a transition from a rotationally dominated dynamo in partially convective stars to a rotation-independent turbulent dynamo in fully convective stars; turbulent dynamos in fully convective stars of spectral types around M4 are still driven by rotation. Finally, we compare projected rotational velocities of 33stars to rotational periods derived from photometry in the literature and determine inclinations for a few of them. © 2012. The American Astronomical Society. All rights reserved. Source

Von Essen C.,University of Aarhus | Von Essen C.,Institute For Astrophysik Gottingen | Mallonn M.,Leibniz Institute for Astrophysics Potsdam | Albrecht S.,University of Aarhus | And 4 more authors.
Astronomy and Astrophysics

We observed a secondary eclipse of WASP-33 b quasi-simultaneously in the optical (∼0.55 μm) and the near-infrared (∼1.05 μm) using the 2 × 8.4 m Large Binocular Telescope. WASP-33 is a δ Scuti star pulsating with periods comparable to the eclipse duration, making the determination of the eclipse depth challenging. We use previously determined oscillation frequencies to model and remove the pulsation signal from the light curves, isolating the secondary eclipse. The determined eclipse depth is ΔF = 1.03 ± 0.34 parts per thousand, corresponding to a brightness temperature of TB = 3398 ± 302 K. Combining previously published data with our new measurement we find the equilibrium temperature of WASP-33 b to be TB = 3358 ± 165 K. We compare all existing eclipse data to a blackbody spectrum, to a carbon-rich non-inverted model and to a solar composition model with an inverted temperature structure. We find that current available data on WASP-33 b's atmosphere can be best represented by a simple blackbody emission, without the need for more sophisticated atmospheric models with temperature inversions. Although our data cannot rule out models with or without a temperature inversion, they do confirm a high brightness temperature for the planet at short wavelengths. WASP-33 b is one of the hottest exoplanets known till date, and its equilibrium temperature is consistent with rapid reradiation of the absorbed stellar light and a low albedo. © ESO, 2015. Source

Hill G.J.,University of Texas at Austin | Tuttle S.E.,University of Texas at Austin | Drory N.,University of Texas at Austin | Lee H.,University of Texas at Austin | And 28 more authors.
Proceedings of SPIE - The International Society for Optical Engineering

The Visible Integral-field Replicable Unit Spectrograph (VIRUS) consists of a baseline build of 150 identical spectrographs (arrayed as 75 unit pairs) fed by 33,600 fibers, each 1.5 arcsec diameter, at the focus of the upgraded 10 m Hobby-Eberly Telescope (HET). VIRUS has a fixed bandpass of 350-550 nm and resolving power R∼700. VIRUS is the first example of industrial-scale replication applied to optical astronomy and is capable of surveying large areas of sky, spectrally. The VIRUS concept offers significant savings of engineering effort, cost, and schedule when compared to traditional instruments. The main motivator for VIRUS is to map the evolution of dark energy for the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX), using 0.8M Lyman-α emitting galaxies as tracers. The full VIRUS array is due to be deployed starting at the end of 2014 and will provide a powerful new facility instrument for the HET, well suited to the survey niche of the telescope, and will open up large area surveys of the emission line universe for the first time. VIRUS is in full production, and we are about half way through. We review the production design, lessons learned in reaching volume production, and preparation for deployment of this massive instrument. We also discuss the application of the replicated spectrograph concept to next generation instrumentation on ELTs. © 2014 SPIE. Source

Panesar N.K.,Max Planck Institute for Solar System Research | Panesar N.K.,Institute For Astrophysik Gottingen | Innes D.E.,Max Planck Institute for Solar System Research | Schmit D.J.,Max Planck Institute for Solar System Research | And 2 more authors.
Solar Physics

Polar crown prominences, that partially circle the Sun's poles between 60° and 70° latitude, are made of chromospheric plasma. We aim to diagnose the 3D dynamics of a polar crown prominence using high-cadence EUV images from the Solar Dynamics Observatory (SDO)/AIA at 304, 171, and 193 Å and the Ahead spacecraft of the Solar Terrestrial Relations Observatory (STEREO-A)/EUVI at 195 Å. Using time series across specific structures, we compare flows across the disk in 195 Å with the prominence dynamics seen on the limb. The densest prominence material forms vertical columns that are separated by many tens of Mm and connected by dynamic bridges of plasma that are clearly visible in 304/171 Å two-colour images. We also observe intermittent but repetitious flows with velocity 15 km s-1 in the prominence that appear to be associated with EUV bright points on the solar disk. The boundary between the prominence and the overlying cavity appears as a sharp edge. We discuss the structure of the coronal cavity seen both above and around the prominence. SDO/HMI and GONG magnetograms are used to infer the underlying magnetic topology. The evolution and structure of the prominence with respect to the magnetic field seems to agree with the filament-linkage model. © 2014 Springer Science+Business Media Dordrecht. Source

Discover hidden collaborations