Entity

Time filter

Source Type


Gonzales E.B.,Health Science Center | Gonzales E.B.,Institute for Aging and Alzheimers Disease Research | Gonzales E.B.,Cardiovascular Research Institute | Smith R.N.,Health Science Center | Agharkar A.S.,Health Science Center
F1000Research | Year: 2014

Creatine is an endogenous compound synthesized from arginine, glycine and methionine. This dietary supplement can be acquired from food sources such as meat and fish, along with athlete supplement powders. Since the majority of creatine is stored in skeletal muscle, dietary creatine supplementation has traditionally been important for athletes and bodybuilders to increase the power, strength, and mass of the skeletal muscle. However, new uses for creatine have emerged suggesting that it may be important in preventing or delaying the onset of neurodegenerative diseases associated with aging. On average, 30% of muscle mass is lost by age 80, while muscular weakness remains a vital cause for loss of independence in the elderly population. In light of these new roles of creatine, the dietary supplement's usage has been studied to determine its efficacy in treating congestive heart failure, gyrate atrophy, insulin insensitivity, cancer, and high cholesterol. In relation to the brain, creatine has been shown to have antioxidant properties, reduce mental fatigue, protect the brain from neurotoxicity, and improve facets/components of neurological disorders like depression and bipolar disorder. The combination of these benefits has made creatine a leading candidate in the fight against age-related diseases, such as Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, long-term memory impairments associated with the progression of Alzheimer's disease, and stroke. In this review, we explore the normal mechanisms by which creatine is produced and its necessary physiology, while paying special attention to the importance of creatine supplementation in improving diseases and disorders associated with brain aging and outlining the clinical trials involving creatine to treat these diseases. © 2014 Smith RN et al. Source


Agharkar A.,Health Science Center | Rzadkowolski J.,Texas College | McBroom M.,Health Science Center | Gonzales E.B.,Health Science Center | And 2 more authors.
Protein Science | Year: 2014

The human voltage-gated proton channel (Hv1) is a membrane protein consisting of four transmembrane domains and intracellular amino- And carboxy-termini. The protein is activated by membrane depolarization, similar to other voltage-sensitive proteins. However, the Hv1 proton channel lacks a traditional ion pore. The human Hv1 proton channel has been implicated in mediating sperm capacitance, stroke, and most recently as a biomarker/mediator of cancer metastasis. Recently, the three-dimensional structures for homologues of this voltage-gated proton channel were reported. However, it is not clear what artificial environment is needed to facilitate the isolation and purification of the human Hv1 proton channel for structural study. In the present study, we generated a chimeric protein that placed an enhanced green fluorescent protein (EGFP) to the amino-terminus of the human Hv1 proton channel (termed EGFP-Hv1). The chimeric protein was expressed in a baculovirus expression system using Sf9 cells and subjected to detergent screening using fluorescence-detection size-exclusion chromatography. The EGFP-Hv1 proton channel can be solubilized in the zwitterionic detergent Anzergent 3-12 and the nonionic n-dodecyl-b-D-maltoside (DDM) with little protein aggregation and a prominent monomeric protein peak at 48 h postinfection. Furthermore, we demonstrate that the chimeric protein exhibits a monomeric protein peak, which is distinguishable from protein aggregates, at the final size-exclusion chromatography purification step. Taken together, we can conclude that solubilization in DDM will provide a useable final product for further structural characterization of the full-length human Hv1 proton channel. © 2014 The Protein Society. Source


Smith R.N.,Health Science Center | Gonzales E.B.,Health Science Center | Gonzales E.B.,Institute for Aging and Alzheimers Disease Research | Gonzales E.B.,Cardiovascular Research Institute
Channels | Year: 2014

Acid-sensing ion channels (ASICs) are proton-sensitive, sodium-selective channels expressed in the nervous system that sense changes in extracellular pH. These ion channels are sensitive to an increasing number of nonproton ligands that include natural venom peptides and guanidine compounds. In the case of chicken ASIC1, the spider toxin Psalmotoxin-1 (PcTx1) activates the channel, resulting in an inward current. Furthermore, a growing class of ligands containing a guanidine group has been identified that stimulate peripheral ASICs (ASIC3), but exert subtle influence on other ASIC subtypes. The effects of the guanidine compounds on cASIC1 have not been the focus of previous study. Here, we investigated the interaction of the guanidine compound 2-guanidine-4- methylquinazoline (GMQ) on cASIC1 proton activation and PcTx1 stimulation. Exposure of expressed cASIC1 to PcTx1 resulted in biphasic currents consisting of a transient peak followed by an irreversible cASIC1 PcTx1 persistent current. This cASIC1 PcTx1 persistent current may be the result of locking the cASIC1 protein into a desensitized transition state. The guanidine compound GMQ increased the apparent affinity of protons on cASIC1 and decreased the half-maximal constant of the cASIC1 steady-state desensitization profile. Furthermore, GMQ stimulated the cASIC1 PcTx1 persistent current in a concentration-dependent manner, which resulted in a non-desensitizing inward current. Our data suggests that GMQ may have multiple sites within cASIC1 and may act as a "molecular wedge" that forces the PcTx1-desensitized ASIC into an open state. Our findings indicate that guanidine compounds, such as GMQ, may alter acid-sensing ion channel activity in combination with other stimuli, and that additional ASIC subtypes (along with ASIC3) may serve to sense and mediate signals from multiple stimuli. © 2014 Landes Bioscience. Source


Sumien N.,Institute for Aging and Alzheimers Disease Research | Chaudhari K.,Institute for Aging and Alzheimers Disease Research | Sidhu A.,Institute for Aging and Alzheimers Disease Research | Forster M.J.,Institute for Aging and Alzheimers Disease Research
Brain Research | Year: 2013

Phytoestrogens are plant-derived compounds found mainly in soy with known estrogenic properties and a potential for benefits to human health. Increased intake in phytoestrogens stemmed from the search for safe alternatives to hormone replacement therapies. Based on epidemiologic evidence comparing Western and Asian populations and clinical studies, phytoestrogens show promise to improve health and brain function. This review is focused on the effects of phytoestrogens on cognition by examining clinical and animal studies, with special attention placed on (1) a window of therapeutic opportunity which may explain the discrepancy among studies, and (2) whether a sex/gender difference exists in response to phytoestrogen intake and what the possible underlying mechanisms may be. © 2013 Elsevier B.V. Source

Discover hidden collaborations