Institute Ecologia and Biodiversidad

Santiago, Chile

Institute Ecologia and Biodiversidad

Santiago, Chile

Time filter

Source Type

Crego R.D.,University of North Texas | Crego R.D.,Institute Ecologia and Biodiversidad | Jimenez J.E.,University of North Texas | Jimenez J.E.,Institute Ecologia and Biodiversidad | And 4 more authors.
Biological Invasions | Year: 2016

With ecosystems increasingly having co-occurring invasive species, it is becoming more important to understand invasive species interactions. At the southern end of the Americas, American beavers (Castor canadensis), muskrats (Ondatra zibethicus), and American mink (Neovison vison), were independently introduced. We used generalized linear models to investigate how muskrat presence related to beaver-modified habitats on Navarino Island, Chile. We also investigated the trophic interactions of the mink with muskrats and beavers by studying mink diet. Additionally, we proposed a conceptual species interaction framework involving these invasive species on the new terrestrial community. Our results indicated a positive association between muskrat presence and beaver-modified habitats. Model average coefficients indicated that muskrats preferred beaver-modified freshwater ecosystems, compared to not dammed naturally flowing streams. In addition, mammals and fish represented the main prey items for mink. Although fish were mink’s dominant prey in marine coastal habitats, muskrats represented >50 % of the biomass of mink diet in inland environments. We propose that beavers affect river flow and native vegetation, changing forests into wetlands with abundant grasses and rush vegetation. Thus, beavers facilitate the existence of muskrats, which in turn sustain inland mink populations. The latter have major impacts on the native biota, especially on native birds and small rodents. The facilitative interactions among beavers, muskrats, and mink that we explored in this study, together with other non-native species, suggest that an invasive meltdown process may exist; however further research is needed to confirm this hypothesis. Finally, we propose a community-level management to conserve the biological integrity of native ecosystems. © 2016 Springer International Publishing Switzerland


Seaman B.J.,University of Santiago de Chile | Seaman B.J.,Institute Ecologia and Biodiversidad IEB | Albornoz F.E.,University of Western Australia | Armesto J.J.,University of Santiago de Chile | And 5 more authors.
Austral Ecology | Year: 2015

Nitrogen and phosphorus are the main elements limiting net primary production in terrestrial ecosystems. When growing in nutrient-poor soils, plants develop physiological mechanisms to conserve nutrients, such as reabsorbing elements from senescing foliage (i.e. nutrient retranslocation). We investigated the changes in soil N and P in post-fire succession in temperate rainforests of southern Chile. In this area, forest recovery often leads to spatially scattered, discrete regeneration with patches varying in age, area, species richness and tree cover, representing different degrees of recovery from disturbance. We hypothesized that soil nutrient concentrations should differ among tree regenerating patches depending on the progress of forest regeneration and that nutrient resorption should increase over time as colonizing trees respond to limited soil nutrients. To evaluate these hypotheses, we sampled 40 regeneration patches in an area of 5ha, spanning a broad range of vegetation complexity, and collected soil, tree foliage and litter samples to determine N and P concentrations. Nutrient concentrations in leaf litter were interpreted as nutrient resorption proficiency. We found that soil P was negatively correlated with all the indicators of successional progress, whereas total soil N was independent of the successional progress. Foliar N and P were unrelated to soil nutrient concentrations; however, litter N was negatively related to soil N, and litter P was positively related with soil P. Finally, foliar N:P ratios ranged from 16 to 25, which suggests that P limitation can hamper post-fire regeneration. We provide evidence that after human-induced fires, succession in temperate forests of Chile can become nutrient limited and that high nutrient retranslocation is a key nutrient conservation strategy for regenerating tree communities. © 2015 Ecological Society of Australia.

Loading Institute Ecologia and Biodiversidad collaborators
Loading Institute Ecologia and Biodiversidad collaborators