Xalapa de Enríquez, Mexico
Xalapa de Enríquez, Mexico

Time filter

Source Type

Estrada-Contreras I.,Institute Ecologa Ac | Equihua M.,Institute Ecologa Ac | Laborde J.,Institute Ecologa Ac | Meyer E.M.,National University of Costa Rica | Sanchez-Velasquez L.R.,University of Veracruz
PLoS ONE | Year: 2016

Climate change is recognized as an important threat to global biodiversity because it increases the risk of extinction of many species on the planet. Mexico is a megadiverse country and native tree species such as red cedar (Cedrela odorata) can be used to maintain forests while helping mitigate climate change, because it is considered a fast growing pioneer species with great economic potential in the forestry industry. In order to assess possible shifts in areas suitable for C. odorata plantations in Mexico with ecological niche models, we used the MaxLike algorithm, climate variables, the geo-referenced records of this species, three general circulation models and three scenarios of future emissions. Results show a current potential distribution of 573,079 km2 with an average probability of occurrence of 0.93 (± 0.13). The potential distribution area could increase up to 650,356 km2 by 2060 according to the general circulation model HADCM3 B2, with an average probability of occurrence of 0.86 (± 0.14). Finally, we delimited an area of 35,377 km2 that has a high potential for the establishment of C. odorata plantations, by selecting those sites with optimal conditions for its growth that are outside protected areas and are currently devoid of trees. C. odorata has a significant potential to help in the mitigation of the effects of climate change. Using MaxLike we identified extense areas in Mexico suitable to increase carbon sequestration through plantations of this highly valued native tree species. © 2016 Estrada-Contreras et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


Huerta C.,Institute Ecologa Ac | Anduaga S.,Institute Ecologa Ac | Lopez-Portillo J.,Institute Ecologa Ac | Halffter G.,Institute Ecologa Ac
Environmental Entomology | Year: 2010

At two temperate pasturelands in northern Mexico, we explored possible competition for food and space under pats during the simultaneous nesting periods of the univoltine species Dichotomius colonicus (Say), Phanaeus quadridens (Say), and Copris sierrensis Matthews. To simulate unlimited resources, 50 5-kg cow dung pats were placed at regular distance intervals in each pastureland. After building trenches around the pats, the number and depth of each nest, as well as larval development status, were documented once for a period of 18 mo. Analyses of variance and association tests were used to make a between-site comparison of dung pat occupation, nests occupied per species, nests per dung pat, and nest depth below each pat. The proportion of pats occupied by each species differed significantly between sites. C. sierrensis colonizing most pats at one site and D. colonicus at the other. There were no differences between sites in the frequency of pats occupied by more than one species. The association test and Ochiai index showed that each species colonized dung pats independently. The results suggest that pat occupation depended on their location by beetles and the relative abundance of each species. The species tended to dig nests at different depths, possibly reducing interspecific competition for space. It can therefore be concluded that, when food resources seem to be unlimited, they are shared following a lottery dynamic model if there is spatial differentiation among species. © 2010 Entomological Society of America.


Hernndez-Ortiz V.,Institute Ecologa Ac | Bartolucci A.F.,Institute Sanidad Y Calidad Alimentaria Of Mendoza | Morales-Valles P.,Institute Investigaciones Agrcolas | Fras D.,University of Santiago de Chile | Selivon D.,University of Sao Paulo
Annals of the Entomological Society of America | Year: 2012

Although a large amount of data have been published in past years on the taxonomic status of the Anastrepha fraterculus (Wiedemann) species complex, there is still a need to know how many species this complex comprises, the distribution of each one, and their distinguishing features. In this study, we assessed the morphometric variability of 32 populations from the A. fraterculus complex, located in major biogeographical areas from the Neotropics. Multivariate techniques for analysis were applied to the measurements of 21 variables referring to the mesonotum, aculeus, and wing. For the first time, our results identified the presence of seven distinct morphotypes within this species complex. According to the biogeographical areas, populations occurring in the Mesoamerican dominion (Mexico, Guatemala, and Panama) were clustered within a single natural entity labeled as the "Mexican" morphotype; whereas in the northwestern South American dominion, samples fell into three distinct groups: the "Venezuelan" morphotype with a single population from the Caribbean lowlands of Venezuela, the "Andean" morphotype from the highlands of Venezuela and Colombia, and the third group or "Peruvian" morphotype comprised the samples from the Pacific coastal lowlands of Ecuador and Peru. Three additional groups were identified from the Chacoan and Paranaense sub-regions: the morphotype "Brazilian-1" was recognized as including the Argentinean samples with most pertaining to Brazil, and widely distributed in these biogeographical areas; the morphotype "Brazilian-2" was recognized as including two samples from the state of Sao Paulo (Ilha-Bela and So Sebastio); whereas the morphotype "Brazilian-3" included a single population from Botucatu (state of Sao Paulo). Based on data published by previous authors showing genetic and karyotypic differentiation, as well as reproductive isolation, we have concluded that such morphotypes indeed represent natural groups and distinct taxonomic entities. © 2012 Entomological Society of America.


Daz A.,Institute Ecologa Ac | Galante E.,University of Alicante | Favila M.E.,Institute Ecologa Ac
Journal of Insect Science | Year: 2010

Understanding the response of species to anthropogenic landscape modification is essential to design effective conservation programs. Recently, insects have been used in empirical studies to evaluate the impact of habitat modification and landscape fragmentation on biological diversity because they are often affected rapidly by changes in land use. In this study, the use of the landscape matrix by dung and carrion beetles in a fragmented tropical rain forest in the Los Tuxtlas Biosphere Reserve was analyzed. Fragments of tropical rain forest, forest-pasture edges, pastures, isolated trees, living fences (trees connected with barbed wire) and barbed wire fences were studied both near and far from forest fragments. Forest fragments had the highest abundance values, but pastures had the highest dung and carrion beetle biomass. Habitat specificity was high for the beetles in the most dissimilar habitats. Forest fragments and forest-pasture edges had and shared the highest number of species, but they shared only two species with pastures, barbed wire fences and isolated trees. Only one forest species was found within living fences far from the forest fragments. However, approximately 37% of the forest species were caught within living fences near the forest fragments. Therefore, forest-pasture edges function as hard edges and prevent movement among forest fragments, but living fences seem to act as continuous habitat corridors when connected to forest fragments, allowing forest beetles to move between the fragments. Further studies are necessary to determine the minimum width of living fences necessary to provide good corridors for these beetles and other species.

Loading Institute Ecologa Ac collaborators
Loading Institute Ecologa Ac collaborators