Institute Des Science Of La Vie & Uclouvain

Louvain-la-Neuve, Belgium

Institute Des Science Of La Vie & Uclouvain

Louvain-la-Neuve, Belgium
SEARCH FILTERS
Time filter
Source Type

Sergent T.,Institute Des Science Of La Vie Uclouvain | Piront N.,University of Namur | Meurice J.,Institute Des Science Of La Vie Uclouvain | Toussaint O.,University of Namur | Schneider Y.-J.,Institute Des Science Of La Vie Uclouvain
Chemico-Biological Interactions | Year: 2010

Phenolic compounds (PCs) are considered to possess anti-inflammatory properties and therefore were proposed as an alternative natural approach to prevent or treat chronic inflammatory diseases. However their effects are not fully understood, particularly at the intestinal level. To further understand their mode of action at the molecular level during intestinal inflammation, an in vitro model of inflamed human intestinal epithelium was established. Different representative dietary PCs, i.e. resveratrol, ellagic and ferulic acids, curcumin, quercetin, chrysin, (-)-epigallocatechin-3-gallate (EGCG) and genistein, were selected. To mimic intestinal inflammation, differentiated Caco-2 cells cultivated in bicameral inserts, in a serum-free medium, were treated with a cocktail of pro-inflammatory substances: interleukin (IL)-1β, tumor necrosis factor-α, interferon-γ and lipopolysaccharides. The inflammatory state was characterized by a leaky epithelial barrier (attenuation of the transepithelial electrical resistance) and by an over-expression at the mRNA and protein levels for pro-inflammatory markers, i.e. IL-6, IL-8 and monocyte chemoattractant protein-1 (MCP-1), quantified by ELISA and by gene expression analysis using a low-density array allowing the evaluation of expression level for 46 genes relevant of the intestinal inflammation and functional metabolism. Treatment with PCs, used at a realistic intestinal concentration, did not affect cell permeability. In inflamed cells, the incubation with genistein reduced the IL-6 and MCP-1 overproduction, to ca. 50% of the control, whereas EGCG provoked a decrease in the IL-6 and IL-8 over-secretion, by 50 and 60%, respectively. This occurred for both flavonoids without any concomitant inhibition of the corresponding mRNA expression. All the PCs generated a specific gene expression profile, with genistein the most efficient in the downregulation of the expression, or over-expression, of inflammatory genes notably those linked to the arachidonic metabolism pathway. In conclusion, this study provides evidence that genistein and EGCG downregulate the inflammatory response in inflamed intestinal epithelial cells by a pathway implicating largely a post-transcriptional regulatory mechanism. © 2010 Elsevier Ireland Ltd.


PubMed | Institute Des Science Of La Vie & Uclouvain
Type: Journal Article | Journal: Food & function | Year: 2012

This study aimed at evaluating the anti-inflammatory properties of a pomegranate fruit husk (PomH) polyphenolic extract, rich in punicalagin, using Caco-2 cells, an in vitro model of human intestinal epithelium. Differentiated cells in bicameral inserts were pretreated or not with a PomH extract or punicalagin, as reference, at the apical side, representing the intestinal lumen. Inflammation was then induced with a cocktail of cytokines (Il-1, TNF and IFN) and LPS. After 24 h incubation, 3 pro-inflammatory markers, i.e., interleukin (IL)-6, IL-8 and monocyte chemoattractant protein (MCP)-1, were assayed both at their gene transcription (qRT-PCR) and secretion (ELISA) levels. As previously described, the pro-inflammatory cocktail significantly stimulated these 3 markers, at the gene transcript and secretion levels. In inflamed cells, a significant down-regulation of the transcription of the genes encoding IL-6 and MCP-1 was observed in the presence of the PomH extract or punicalagin, while IL-8 transcription was unaffected. Both treatments also decreased the amounts of the 3 proteins with dose-response effects, but only in the apical compartment. A lowered ELISA response was also observed when either IL-6, IL-8 or MCP-1 were mixed with punicalagin in a cell-free culture medium, indicating a direct molecular interaction. In conclusion, the punicalagin-rich PomH extract tested showed anti-inflammatory properties in the Caco-2 in vitro intestinal model. It acted both on the pro-inflammatory gene transcription and protein levels, the later phenomenon being possibly due to a direct molecular trapping. These data suggest that pomegranate husk could be an interesting natural source contributing to prevent intestinal chronic inflammation.


PubMed | Institute Des Science Of La Vie & Uclouvain
Type: Journal Article | Journal: Toxicology and applied pharmacology | Year: 2010

Deoxynivalenol (DON), one of the most common mycotoxin contaminants of raw and processed cereal food, adversely affects the gastrointestinal tract. Since DON acts as a protein synthesis inhibitor, the constantly renewing intestinal epithelium could be particularly sensitive to DON. We analyzed the toxicological effects of DON on intestinal epithelial protein synthesis and barrier integrity. Differentiated Caco-2 cells, as a widely used model of the human intestinal barrier, were exposed to realistic intestinal concentrations of DON (50, 500 and 5000 ng/ml) during 24h. DON caused a concentration-dependent decrease in total protein content associated with a reduction in the incorporation of [(3)H]-leucine, demonstrating its inhibitory effect on protein synthesis. DON simultaneously increased the paracellular permeability of the monolayer as reflected through a decreased transepithelial electrical resistance associated with an increased paracellular flux of the tracer [(3)H]-mannitol. A concentration-dependent reduction in the expression level of the tight junction constituent claudin-4 was demonstrated by Western blot, which was not due to diminished transcription, increased degradation, or NF-kappaB, ERK or JNK activation, and was also observed for a tight junction independent protein, i.e. intestinal alkaline phosphatase. These results demonstrate a dual toxicological effect of DON on differentiated Caco-2 cells consisting in an inhibition of protein synthesis as well as an increase in monolayer permeability, and moreover suggest a possible link between them through diminished synthesis of the tight junction constituent claudin-4.


PubMed | Institute Des Science Of La Vie & Uclouvain
Type: Journal Article | Journal: Food chemistry | Year: 2012

In an attempt to understand the beneficial health effects of Artemisia annua other than its anti-malaria properties, extracts from different cultivars prepared as tea infusions were investigated using Caco-2 cells on the intestinal inflammation and cytochrome P450 (CYP) activities. The characterisation of their phenolic compound (PC) profile revealed rosmarinic and chlorogenic acids as the main PCs. The extracts, assayed on Caco-2 cells at a plausible intestinal concentration, significantly decreased the secretion of pro-inflammatory cytokines, IL-8 and IL-6. This effect could be attributable at least to their content in rosmarinic acid, detected as a potent anti-inflammatory compound. The extracts also inhibited the activity of CYP3A4, whose expression was induced by 1,25-dihydroxyvitamin D(3), and of CYP1A1, induced by benzo(a)pyrene. Our results highlight the advantage of drinking A. annua infusions for their potent anti-inflammatory effect, linked to PC content, which could synergise their antimalarial activity.


PubMed | Institute Des Science Of La Vie & Uclouvain
Type: Journal Article | Journal: The British journal of nutrition | Year: 2013

A range of Se species has been shown to occur in a variety of different foodstuffs. Depending on its speciation, Se is more or less bioavailable to human subjects. In the present study, the role of speciation as a determinant of Se bioavailability was addressed with an investigation of species-specific mechanisms of transport at the intestinal level. The present work focused on four distinct Se compounds (selenate (Se(VI)), selenite (Se(IV)), selenomethionine (SeMet) and methylselenocysteine (MeSeCys)), whose intestinal transport was mimicked through an in vitro bicameral model of enterocyte-like differentiated Caco-2 cells. Efficiency of Se absorption was shown to be species dependent (SeMet > MeSeCys > Se(VI) > Se(IV)). In the case of SeMet, MeSeCys and Se(VI), the highly polarised passage from the apical to basolateral pole indicated that a substantial fraction of transport was transcellular, whilst results for Se(IV) indicated paracellular diffusion. Passage of the organic Se species (SeMet and MeSeCys) became saturated after 3 h, but no such effect was observed for the inorganic species. In addition, SeMet and MeSeCys transport was significantly inhibited by their respective S analogues methionine and methylcysteine, which suggests a common transport system for both kinds of compounds.


Obese adipose tissues contain a higher proportion of inflamed macrophages than the normal adipose tissue. Adipocytes and macrophages are known to secrete pro-inflammatory markers that establish the systemic inflammation leading to metabolic complications. CCL-2 secreted by hypertrophied adipocytes attracts and activates macrophages in the adipose tissue. These cells, in turn, secrete TNF and other pro-inflammatory molecules. The pomegranate husk extract and its phenolic constituents, punicalagin and ellagic acid, have exhibited an anti-inflammatory effect. In this study, we used an in vitro coculture system of 3T3-L1 murine adipocytes and RAW 264.7 macrophages to investigate the potential anti-inflammatory effects of these compounds on the vicious cycle between both cell types. The pomegranate husk extract presented an anti-inflammatory effect on the inflamed cells cultivated independently, as suggested by a decrease of (i) CCL-2 secretion by both cell types, (ii) adipocyte IL-6 expression and secretion, and (iii) macrophage TNF secretion. Nevertheless and surprisingly, no anti-inflammatory effect was observed in coculture. Punicalagin, at the same concentration as that found in the pomegranate extract, had a more potent effect than the extract and in coculture; it reduced significantly the IL-6 secretion. Ellagic acid decreased TNF and CCL-2 macrophage secretion, CCL-2 adipocyte secretion and, in coculture, it reduced IL-6 secretion and expression by adipocytes. These results indicate that the pomegranate husk extract has an anti-inflammatory action on adipocytes and macrophages but seems to be not able to reduce the inflammatory vicious cycle between both cells. Ellagitannin and punicalagin showed a better effect on inflammation suggesting that PHE will be a good candidate for more investigations.

Loading Institute Des Science Of La Vie & Uclouvain collaborators
Loading Institute Des Science Of La Vie & Uclouvain collaborators