Entity

Time filter

Source Type


Gonzalez-Ibeas D.,CSIC - Center of Edafology and Applied Biology of the Segura | Canizares J.,Institute Conservacion Y Mejora Of La Agrodiversidad Valenciana Comav Upv | Aranda M.A.,CSIC - Center of Edafology and Applied Biology of the Segura
Molecular Plant-Microbe Interactions | Year: 2012

Resistance to Watermelon mosaic virus (WMV) in melon (Cucumis melo L.) accession TGR-1551 is characterized by a significant reduction in virus titer, and is inherited as a recessive, loss-of-susceptibility allele. We measured virus RNA accumulation in TGR-1551 plants and a susceptible control ('Tendral') by real-time quantitative polymerase chain reaction, and also profiled the expression of 17,443 unigenes represented on a melon microarray over a 15-day time course. The virus accumulated to higher levels in cotyledons of the resistant variety up to 9 days postinoculation (dpi) but, thereafter, levels increased in the susceptible variety while those in the resistant variety declined. Microarray experiments looking at the early response to infection (1 and 3 dpi), as well as responses after 7 and 15 dpi, revealed more profound transcriptomic changes in resistant plants than susceptible ones. The gene expression profiles revealed deep and extensive transcriptome remodeling in TGR-1551 plants, often involving genes with pathogen response functions. Overall, our data suggested that resistance to WMV in TGR-1551 melon plants is associated with a defense response, which contrasts with the recessive nature of the resistance trait.


Gonzalez-Ibeas D.,CSIC - Center of Edafology and Applied Biology of the Segura | Blanca J.,Institute Conservacion Y Mejora Of La Agrodiversidad Valenciana Comav Upv | Donaire L.,CSIC - Biological Research Center | Saladie M.,Center for Research in Agricultural Genomics UAB | And 5 more authors.
BMC Genomics | Year: 2011

Background: Melon (Cucumis melo L.) is a commercially important fruit crop that is cultivated worldwide. The melon research community has recently benefited from the determination of a complete draft genome sequence and the development of associated genomic tools, which have allowed us to focus on small RNAs (sRNAs). These are short, non-coding RNAs 21-24 nucleotides in length with diverse physiological roles. In plants, they regulate gene expression and heterochromatin assembly, and control protection against virus infection. Much remains to be learned about the role of sRNAs in melon.Results: We constructed 10 sRNA libraries from two stages of developing ovaries, fruits and photosynthetic cotyledons infected with viruses, and carried out high-throughput pyrosequencing. We catalogued and analysed the melon sRNAs, resulting in the identification of 26 known miRNA families (many conserved with other species), the prediction of 84 melon-specific miRNA candidates, the identification of trans-acting siRNAs, and the identification of chloroplast, mitochondrion and transposon-derived sRNAs. In silico analysis revealed more than 400 potential targets for the conserved and novel miRNAs.Conclusion: We have discovered and analysed a large number of conserved and melon-specific sRNAs, including miRNAs and their potential target genes. This provides insight into the composition and function of the melon small RNAome, and paves the way towards an understanding of sRNA-mediated processes that regulate melon fruit development and melon-virus interactions. © 2011 Gonzalez-Ibeas et al; licensee BioMed Central Ltd.


Gomez-Aix C.,CSIC - Center of Edafology and Applied Biology of the Segura | Pascual L.,Center for Research in Agricultural Genomics | Canizares J.,Institute Conservacion Y Mejora Of La Agrodiversidad Valenciana Comav Upv | Sanchez-Pina M.A.,CSIC - Center of Edafology and Applied Biology of the Segura | Aranda M.A.,CSIC - Center of Edafology and Applied Biology of the Segura
BMC Genomics | Year: 2016

Background: Viruses are among the most destructive and difficult to control plant pathogens. Melon (Cucumis melo L.) has become the model species for the agriculturally important Cucurbitaceae family. Approaches that take advantage of recently developed genomic tools in melon have been extremely useful for understanding viral pathogenesis and can contribute to the identification of target genes for breeding new resistant cultivars. In this work, we have used a recently described melon microarray for transcriptome profiling of two melon cultivars infected with two strains of Melon necrotic spot virus (MNSV) that only differ on their 3'-untranslated regions. Results: Melon plant tissues from the cultivars Tendral or Planters Jumbo were locally infected with either MNSV-Mα5 or MNSV-Mα5/3'264 and analysed in a time-course experiment. Principal component and hierarchical clustering analyses identified treatment (healthy vs. infected) and sampling date (3 vs. 5 dpi) as the primary and secondary variables, respectively. Out of 7566 and 7074 genes deregulated by MNSV-Mα5 and MNSV-Mα5/3'264, 1851 and 1356, respectively, were strain-specific. Likewise, MNSV-Mα5/3'264 specifically deregulated 2925 and 1618 genes in Tendral and Planters Jumbo, respectively. The GO categories that were significantly affected were clearly different for the different virus/host combinations. Grouping genes according to their patterns of expression allowed for the identification of two groups that were specifically deregulated by MNSV-Mα5/3'264 with respect to MNSV-Mα5 in Tendral, and one group that was antagonistically regulated in Planters Jumbo vs. Tendral after MNSV-Mα5/3'264 infection. Genes in these three groups belonged to diverse functional classes, and no obvious regulatory commonalities were identified. When data on MNSV-Mα5/Tendral infections were compared to equivalent data on cucumber mosaic virus or watermelon mosaic virus infections, cytokinin-O-glucosyltransferase2 was identified as the only gene that was deregulated by all three viruses, with infection dynamics correlating with the amplitude of transcriptome remodeling. Conclusions: Strain-specific changes, as well as cultivar-specific changes, were identified by profiling the transcriptomes of plants from two melon cultivars infected with two MNSV strains. No obvious regulatory features shared among deregulated genes have been identified, pointing toward regulation through differential functional pathways. © 2016 The Author(s).


Gonzalez-Ibeas D.,CSIC - Center of Edafology and Applied Biology of the Segura | Blanca J.,Institute Conservacion Y Mejora Of La Agrodiversidad Valenciana Comav Upv | Canizares J.,Institute Conservacion Y Mejora Of La Agrodiversidad Valenciana Comav Upv | Truniger V.,CSIC - Center of Edafology and Applied Biology of the Segura | Aranda M.A.,CSIC - Center of Edafology and Applied Biology of the Segura
Plant Molecular Biology Reporter | Year: 2012

DNA microarrays are two-dimensional arrangements of specific probes deposited on a substrate that have been widely used in gene expression analysis by measuring mRNA accumulation. The use of this type of microarrays involves the synthesis of cDNA, which has to be double stranded (ds) if the microarray probes are of the positive strand. We have used a melon custom-synthesized noncommercial NimbleGen microarray to evaluate a modification of the SMART™ (switching mechanism at the 5′ end of the RNA transcript) procedure of ds cDNA synthesis, which differs substantially in its economical cost relative to a widely recommended method based on the nick translation approach. The results suggested that both methods produce cDNA representative of the transcriptome to a similar extent, indicating that the alternative technique provides a cheaper method of ds cDNA synthesis for plant microarray gene expression assays when the RNA starting material is not limiting. © 2012 Springer-Verlag.

Discover hidden collaborations