Institute Ciencias Basicas y Medicina Experimental ICBME

CABA, Argentina

Institute Ciencias Basicas y Medicina Experimental ICBME

CABA, Argentina
SEARCH FILTERS
Time filter
Source Type

Sesarini C.V.,Institute Ciencias Basicas y Medicina Experimental ICBME | Costa L.,Institute Ciencias Basicas y Medicina Experimental ICBME | Naymark M.,Hospital Italiano Of Buenos Aires Hiba | Granana N.,Hospital Durand | And 3 more authors.
Autism Research | Year: 2014

Autism spectrum disorders (ASD) can be conceptualized as a genetic dysfunction that disrupts development and function of brain circuits mediating social cognition and language. At least some forms of ASD may be associated with high level of excitation in neural circuits, and gamma-aminobutyric acid (GABA) has been implicated in its etiology. Single-nucleotide polymorphisms (SNP) located within the GABA receptor (GABAR) subunit genes GABRA1, GABRG2, GABRB3, and GABRD were screened. A hundred and thirty-six Argentinean ASD patients and 150 controls were studied, and the contribution of the SNPs in the etiology of ASD was evaluated independently and/or through gene-gene interaction using multifactor dimensionality reduction (MDR) method. From the 18 SNP studied, 11 were not present in our Argentinean population (patients and controls) and 1 SNP had minor allele frequency <0.1%. For the remaining six SNPs, none provided statistical significant association with ASD when considering allelic or genotypic frequencies. Non-significant association with ASD was found for the haplotype analysis. MDR identified evidence for synergy between markers in GABRB3 (chromosome 15) and GABRD (chromosome 1), suggesting potential gene-gene interaction across chromosomes associated with increased risk for autism (testing balanced accuracy: 0.6081 and cross-validation consistency: 10/10, P<0.001). Considering our Argentinean ASD sample, it can be inferred that GABRB3 would be involved in the etiology of autism through interaction with GABRD. These results support the hypothesis that GABAR subunit genes are involved in autism, most likely via complex gene-gene interactions. Autism Res 2014, 7: 162-166. © 2013 International Society for Autism Research, Wiley Periodicals, Inc.


Sesarini C.,Institute Ciencias Basicas y Medicina Experimental ICBME | Argibay P.,Institute Ciencias Basicas y Medicina Experimental ICBME | Argibay P.,Instituto Universitario | Otano L.,Instituto Universitario
Medicina | Year: 2010

Current prenatal diagnosis of monogeneic and chromosomal diseases, includes invasive procedures which carry a small but significant risk. For many years, analysis of fetal cells in maternal circulation has been studied, however it has failed its clinical use due to the scarcity of these cells and their persistance after delivery. For more than a decade, the presence of cell-free fetal DNA in maternal blood has been identified. These fetal DNA fragments would derive from the placenta and are not detected after delivery, making them a source of fetal material for carrying out diagnosis techniques using maternal blood. However, the vast majority of cell free DNA in maternal circulation is of maternal origin, with the fetal component contributing from 3% to 6% and rising towards term. Available methodologies do not allow separation of fetal from maternal cell free DNA, so current applications have been focused on the analysis of genes not present in the mother, such as Y chromosome sequences, or RHD gene in RhD-negative women, or paternal or de novo mutations. Also, the detection of cell-free fetal RNA in maternal blood offers the possibility of obtaining information regarding genetic expression profiles of embrionic tissues, and using genes expressed only at the feto-placental unit, controls for the presence of fetal material could be established, regardless of maternal genetic tissue. The present article describes the evidences regarding the passage of fetal nucleic acids to maternal circulation, its current prenatal diagnosis application and possible future perspectives.


PubMed | Institute Ciencias Basicas y Medicina Experimental ICBME
Type: Journal Article | Journal: Autism research : official journal of the International Society for Autism Research | Year: 2014

Autism spectrum disorders (ASD) can be conceptualized as a genetic dysfunction that disrupts development and function of brain circuits mediating social cognition and language. At least some forms of ASD may be associated with high level of excitation in neural circuits, and gamma-aminobutyric acid (GABA) has been implicated in its etiology. Single-nucleotide polymorphisms (SNP) located within the GABA receptor (GABAR) subunit genes GABRA1, GABRG2, GABRB3, and GABRD were screened. A hundred and thirty-six Argentinean ASD patients and 150 controls were studied, and the contribution of the SNPs in the etiology of ASD was evaluated independently and/or through gene-gene interaction using multifactor dimensionality reduction (MDR) method. From the 18 SNP studied, 11 were not present in our Argentinean population (patients and controls) and 1 SNP had minor allele frequency < 0.1%. For the remaining six SNPs, none provided statistical significant association with ASD when considering allelic or genotypic frequencies. Non-significant association with ASD was found for the haplotype analysis. MDR identified evidence for synergy between markers in GABRB3 (chromosome 15) and GABRD (chromosome 1), suggesting potential gene-gene interaction across chromosomes associated with increased risk for autism (testing balanced accuracy: 0.6081 and cross-validation consistency: 10/10, P < 0.001). Considering our Argentinean ASD sample, it can be inferred that GABRB3 would be involved in the etiology of autism through interaction with GABRD. These results support the hypothesis that GABAR subunit genes are involved in autism, most likely via complex gene-gene interactions.

Loading Institute Ciencias Basicas y Medicina Experimental ICBME collaborators
Loading Institute Ciencias Basicas y Medicina Experimental ICBME collaborators