Entity

Time filter

Source Type

Mexico City, Mexico

Zepeda-Lopez H.M.,National Polytechnic Institute of Mexico | Perea-Araujo L.,National Polytechnic Institute of Mexico | Miliar-Garcia A.,National Polytechnic Institute of Mexico | Dominguez-Lopez A.,National Polytechnic Institute of Mexico | And 9 more authors.
PLoS ONE | Year: 2010

Background: Influenza viruses pose a threat to human health because of their potential to cause global disease. Between mid March and mid April a pandemic influenza A virus emerged in Mexico. This report details 202 cases of infection of humans with the 2009 influenza A virus (H1N1)v which occurred in Mexico City as well as the spread of the virus throughout the entire country. Methodology and Findings: From May 1st to May 5th nasopharyngeal swabs, derived from 751 patients, were collected at 220 outpatient clinics and 28 hospitals distributed throughout Mexico City. Analysis of samples using real time RT-PCR revealed that 202 patients out of the 751 subjects (26.9%) were confirmed to be infected with the new virus. All confirmed cases of human infection with the strain influenza (H1N1)v suffered respiratory symptoms. The greatest number of confirmed cases during the outbreak of the 2009 influenza A (H1N1)v were seen in neighbourhoods on the northeast side of Mexico City including Iztapalapa, Gustavo A. Madero, Iztacalco, and Tlahuac which are the most populated areas in Mexico City. Using these data, together with data reported by the Mexican Secretariat of Health (MSH) to date, we plot the course of influenza (H1N1)v activity throughout Mexico. Conclusions: Our data, which is backed up by MSH data, show that the greatest numbers of the 2009 influenza A (H1N1) cases were seen in the most populated areas. We speculate on conditions in Mexico which may have sparked this flu pandemic, the first in 41 years. We accept the hypothesis that high population density and a mass gathering which took in Iztapalapa contributed to the rapid spread of the disease which developed in three peaks of activity throughout the Country. © 2010 Zepeda-Lopez et al. Source


Juarez-Verdayes M.A.,Escuela Nacional de Ciencias Biologicas IPN | Parra-Ortega B.,Escuela Nacional de Ciencias Biologicas IPN | Parra-Ortega B.,Institute Ciencia y Tecnologia | Hernandez-Rodriguez C.,Escuela Nacional de Ciencias Biologicas IPN | And 4 more authors.
Microbial Pathogenesis | Year: 2012

NorA, NorB, and NorC are efflux proteins in the Nor family that regulate the secretion of fluoroquinolones, and MgrA/NorR is a transcription factor of the Nor family. Overexpression of Nor family proteins provides fluoroquinolone resistance in Staphylococcus aureus. However, in coagulase-negative staphylococci (CNS), members of the Nor family had not been identified. In this work, the presence of Nor family proteins in Staphylococcus spp. and the expression of Nor family in gatifloxacin resistant S. epidermidis strains obtained from ocular infections (OI) were identified and analyzed. S. epidermidis strains from OIs (n = 44) and healthy skin (HS; n = 52) were isolated. The nor family genes were identified in CNS using PCR, sequencing and phylogenetic approaches. Nor family expression was determined by RT-PCR. NorA efflux activity was determined using the automated ethidium bromide method. In-silico analysis showed that norA, mgrA/norR, and "norB-like" and "norC-like" (norB/norC) genes are present in CNS. The nor family genes were distributed and constitutively expressed in all S. epidermidis strains studied. In one gatifloxacin resistant strain isolated from the endophthalmitis, treatment with gatifloxacin induced overexpression of the norA gene and resulted in high activity of NorA efflux. These results indicate that the Nor family of proteins is present in CNS, and the NorA efflux mechanism for gatifloxacin response occurs in at least one strain of S. epidermidis, contributing to gatifloxacin resistance. © 2012 Elsevier Ltd. Source


Laimbacher A.S.,University of Zurich | Esteban L.E.,National University of Quilmes | Castello A.A.,National University of Quilmes | Abdusetir Cerfoglio J.C.,National University of Quilmes | And 14 more authors.
Molecular Therapy | Year: 2012

Virus-like particles (VLPs) are promising vaccine candidates because they represent viral antigens in the authentic conformation of the virion and are therefore readily recognized by the immune system. As VLPs do not contain genetic material they are safer than attenuated virus vaccines. In this study, herpes simplex virus type 1 (HSV-1) amplicon vectors were constructed to coexpress the rotavirus (RV) structural genes VP2, VP6, and VP7 and were used as platforms to launch the production of RV-like particles (RVLPs) in vector-infected mammalian cells. Despite the observed splicing of VP6 RNA, full-length VP6 protein and RVLPs were efficiently produced. Intramuscular injection of mice with the amplicon vectors as a two-dose regimen without adjuvants resulted in RV-specific humoral immune responses and, most importantly, immunized mice were partially protected at the mucosal level from challenge with live wild-type (wt) RV. This work provides proof of principle for the application of HSV-1 amplicon vectors that mediate the efficient production of heterologous VLPs as genetic vaccines. © The American Society of Gene & Cell Therapy. Source

Discover hidden collaborations