Time filter

Source Type

Penades J.R.,University of Glasgow | Chen J.,New York University | Quiles-Puchalt N.,University of Glasgow | Quiles-Puchalt N.,CEU Cardenal Herrera University | And 3 more authors.
Current Opinion in Microbiology | Year: 2015

Bacteriophages are types of viruses that infect bacteria. They are the most abundant and diverse entities in the biosphere, and influence the evolution of most bacterial species by promoting gene transfer, sometimes in unexpected ways. Although pac-type phages can randomly package and transfer bacterial DNA by a process called generalized transduction, some mobile genetic elements have developed elegant and sophisticated strategies to hijack the phage DNA-packaging machinery for their own transfer. Moreover, phage-like particles (gene transfer agents) have also evolved, that can package random pieces of the producing cell's genome. The purpose of this review is to give an overview of some of the various ways by which phages and phage-like particles can transfer bacterial genes, driving bacterial evolution and promoting the emergence of novel pathogens. © 2014 Elsevier Ltd. Source

Marin I.,Institute Biomedicina Of Valencia Ibv Csic
PLoS ONE | Year: 2012

Most proteins of the TRIM family (also known as RBCC family) are ubiquitin ligases that share a peculiar protein structure, characterized by including an N-terminal RING finger domain closely followed by one or two B-boxes. Additional protein domains found at their C termini have been used to classify TRIM proteins into classes. TRIMs are involved in multiple cellular processes and many of them are essential components of the innate immunity system of animal species. In humans, it has been shown that mutations in several TRIM-encoding genes lead to diverse genetic diseases and contribute to several types of cancer. They had been hitherto detected only in animals. In this work, by comprehensively analyzing the available diversity of TRIM and TRIM-like protein sequences and evaluating their evolutionary patterns, an improved classification of the TRIM family is obtained. Members of one of the TRIM subfamilies defined, called Subfamily A, turn to be present not only in animals, but also in many other eukaryotes, such as fungi, apusozoans, alveolates, excavates and plants. The rest of subfamilies are animal-specific and several of them originated only recently. Subfamily A proteins are characterized by containing a MATH domain, suggesting a potential evolutionary connection between TRIM proteins and a different type of ubiquitin ligases, known as TRAFs, which contain quite similar MATH domains. These results indicate that the TRIM family emerged much earlier than so far thought and contribute to our understanding of its origin and diversification. The structural and evolutionary links with the TRAF family of ubiquitin ligases can be experimentally explored to determine whether functional connections also exist. © 2012 Ignacio Marín. Source

Valle J.,Public University of Navarra | Latasa C.,Public University of Navarra | Gil C.,Public University of Navarra | Toledo-Arana A.,Public University of Navarra | And 3 more authors.
PLoS Pathogens | Year: 2012

The biofilm matrix, composed of exopolysaccharides, proteins, nucleic acids and lipids, plays a well-known role as a defence structure, protecting bacteria from the host immune system and antimicrobial therapy. However, little is known about its responsibility in the interaction of biofilm cells with host tissues. Staphylococcus aureus, a leading cause of biofilm-associated chronic infections, is able to develop a biofilm built on a proteinaceous Bap-mediated matrix. Here, we used the Bap protein as a model to investigate the role that components of the biofilm matrix play in the interaction of S. aureus with host cells. The results show that Bap promotes the adhesion but prevents the entry of S. aureus into epithelial cells. A broad analysis of potential interaction partners for Bap using ligand overlayer immunoblotting, immunoprecipitation with purified Bap and pull down with intact bacteria, identified a direct binding between Bap and Gp96/GRP94/Hsp90 protein. The interaction of Bap with Gp96 provokes a significant reduction in the capacity of S. aureus to invade epithelial cells by interfering with the fibronectin binding protein invasion pathway. Consistent with these results, Bap deficient bacteria displayed an enhanced capacity to invade mammary gland epithelial cells in a lactating mice mastitis model. Our observations begin to elucidate the mechanisms by which components of the biofilm matrix can facilitate the colonization of host tissues and the establishment of persistent infections. © 2012 Valle et al. Source

Francis S.M.,Institute Biomedicina Of Valencia Ibv Csic
Nucleic acids research | Year: 2012

Developmentally Regulated GTP-binding (DRG) proteins are highly conserved GTPases that associate with DRG Family Regulatory Proteins (DFRP). The resulting complexes have recently been shown to participate in eukaryotic translation. The structure of the Rbg1 GTPase, a yeast DRG protein, in complex with the C-terminal region of its DFRP partner, Tma46, was solved by X-ray diffraction. These data reveal that DRG proteins are multimodular factors with three additional domains, helix-turn-helix (HTH), S5D2L and TGS, packing against the GTPase platform. Surprisingly, the S5D2L domain is inserted in the middle of the GTPase sequence. In contrast, the region of Tma46 interacting with Rbg1 adopts an extended conformation typical of intrinsically unstructured proteins and contacts the GTPase and TGS domains. Functional analyses demonstrate that the various domains of Rbg1, as well as Tma46, modulate the GTPase activity of Rbg1 and contribute to the function of these proteins in vivo. Dissecting the role of the different domains revealed that the Rbg1 TGS domain is essential for the recruitment of this factor in polysomes, supporting further the implication of these conserved factors in translation. Source

Megias D.,Confocal Microscopy Unit | Bravo J.,Institute Biomedicina Of Valencia Ibv Csic
Journal of Cellular Biochemistry | Year: 2010

Sorting nexin 6 (SNX6), a predominantly cytoplasmic protein involved in intracellular trafficking of membrane receptors, was identified as a TGF-β family interactor. However, apart from being a component of the Retromer, little is known about SNX6 cellular functions. Pim-1-dependent SNX6 nuclear translocation has been reported suggesting a putative nuclear role for SNX6. Here, we describe a previously non-reported association of SNX6 with breast cancer metastasis suppressor 1 (BRMS1) protein detected by a yeast two-hybrid screening. The interaction can be reconstituted in vitro and further FRET analysis confirmed the novel interaction. Additionally, we identified their coiled-coil domains as the minimal binding motives required for interaction. Since BRMS1 has been shown to repress transcription, we sought the ability of SNX6 to interfere with this nuclear activity. Using a standard gene reporter assay, we observed that SNX6 increases BRMS1-dependent transcriptional repression. Moreover, over-expression of SNX6 was capable of diminishing trans-activation in a dose-dependent manner. © 2010 Wiley-Liss, Inc. Source

Discover hidden collaborations