Institute Biomedicina Of Valencia Del Consejo Superior Of Investigaciones Cientificas Ibv Csic

Canet lo Roig, Spain

Institute Biomedicina Of Valencia Del Consejo Superior Of Investigaciones Cientificas Ibv Csic

Canet lo Roig, Spain

Time filter

Source Type

Agra Andrieu N.,Autonomous University of Madrid | Motino O.,Autonomous University of Madrid | Mayoral R.,Autonomous University of Madrid | Mayoral R.,CIBER ISCIII | And 8 more authors.
PLoS ONE | Year: 2012

Cyclooxygenase-2 (COX-2) expression has been detected in human hepatoma cell lines and in human hepatocellular carcinoma (HCC); however, the contribution of COX-2 to the development of HCC remains controversial. COX-2 expression is higher in the non-tumoral tissue and inversely correlates with the differentiation grade of the tumor. COX-2 expression depends on the interplay between different cellular pathways involving both transcriptional and post-transcriptional regulation. The aim of this work was to assess whether COX-2 could be regulated by microRNAs in human hepatoma cell lines and in human HCC specimens since these molecules contribute to the regulation of genes implicated in cell growth and differentiation. Our results show that miR-16 silences COX-2 expression in hepatoma cells by two mechanisms: a) by binding directly to the microRNA response element (MRE) in the COX-2 3′-UTR promoting translational suppression of COX-2 mRNA; b) by decreasing the levels of the RNA-binding protein Human Antigen R (HuR). Furthermore, ectopic expression of miR-16 inhibits cell proliferation, promotes cell apoptosis and suppresses the ability of hepatoma cells to develop tumors in nude mice, partially through targeting COX-2. Moreover a reduced miR-16 expression tends to correlate to high levels of COX-2 protein in liver from patients affected by HCC. Our data show an important role for miR-16 as a post-transcriptional regulator of COX-2 in HCC and suggest the potential therapeutic application of miR-16 in those HCC with a high COX-2 expression. © 2012 Agra Andrieu et al.


PubMed | Research Center Principe Felipe, Institute Biomedicina Of Valencia Del Consejo Superior Of Investigaciones Cientificas Ibv Csic, Institute Biologia Molecular Of Barcelona Del Consejo Superior Of Investigaciones Cientificas Ibmb Csic and Research Center Biomedica en Red Sobre Enfermedades Raras del Institute Salud Carlos ISC
Type: | Journal: Scientific reports | Year: 2015

Human carbamoyl phosphate synthetase (CPS1), a 1500-residue multidomain enzyme, catalyzes the first step of ammonia detoxification to urea requiring N-acetyl-L-glutamate (NAG) as essential activator to prevent ammonia/amino acids depletion. Here we present the crystal structures of CPS1 in the absence and in the presence of NAG, clarifying the on/off-switching of the urea cycle by NAG. By binding at the C-terminal domain of CPS1, NAG triggers long-range conformational changes affecting the two distant phosphorylation domains. These changes, concerted with the binding of nucleotides, result in a dramatic remodeling that stabilizes the catalytically competent conformation and the building of the ~35-long tunnel that allows migration of the carbamate intermediate from its site of formation to the second phosphorylation site, where carbamoyl phosphate is produced. These structures allow rationalizing the effects of mutations found in patients with CPS1 deficiency (presenting hyperammonemia, mental retardation and even death), as exemplified here for some mutations.


Nguyen Le Minh P.,Vrije Universiteit Brussel | Nguyen Le Minh P.,Institute Biomedicina Of Valencia Del Consejo Superior Of Investigaciones Cientificas Ibv Csic | de Cima S.,Institute Biomedicina Of Valencia Del Consejo Superior Of Investigaciones Cientificas Ibv Csic | Bervoets I.,Vrije Universiteit Brussel | And 3 more authors.
FEBS Open Bio | Year: 2015

RutR is a member of the large family of TetR transcriptional regulators in Escherichia coli. It was originally discovered as the regulator of the rutABCDEFG operon encoding a novel pathway for pyrimidine utilization, but its highest affinity target is the control region of the carAB operon, encoding carbamoylphosphate synthase. Unlike most other TetR-like regulators, RutR exerts both positive and negative effects on promoter activity. Furthermore, RutR exhibits a very narrow ligand binding specificity, unlike the broad effector specificity that characterizes some of the well-studied multidrug resistance regulators of the family. Here we focus on ligand binding and ligand specificity of RutR. We construct single alanine substitution mutants of amino acid residues of the ligand-binding pocket, study their effect on in vitro DNA binding in absence and presence of potential ligands, and analyse their effect on positive regulation of the carP1 promoter and negative autoregulation in vivo. Although RutR structures have been determined previously, they were deposited in the Protein Data Bank without accompanying publications. All of them have uracil bound in the effector-binding site, representing the inactive form of the regulator. We determined the crystal structure of an unliganded mutant RutR protein and provide a structural basis for the use of uracil as sole effector molecule and the exclusion of the very similar thymine from the ligand-binding pocket. © 2015 The Authors.


PubMed | Institute Biomedicina Of Valencia Del Consejo Superior Of Investigaciones Cientificas Ibv Csic and Vrije Universiteit Brussel
Type: | Journal: FEBS open bio | Year: 2015

RutR is a member of the large family of TetR transcriptional regulators in Escherichia coli. It was originally discovered as the regulator of the rutABCDEFG operon encoding a novel pathway for pyrimidine utilization, but its highest affinity target is the control region of the carAB operon, encoding carbamoylphosphate synthase. Unlike most other TetR-like regulators, RutR exerts both positive and negative effects on promoter activity. Furthermore, RutR exhibits a very narrow ligand binding specificity, unlike the broad effector specificity that characterizes some of the well-studied multidrug resistance regulators of the family. Here we focus on ligand binding and ligand specificity of RutR. We construct single alanine substitution mutants of amino acid residues of the ligand-binding pocket, study their effect on in vitro DNA binding in absence and presence of potential ligands, and analyse their effect on positive regulation of the carP1 promoter and negative autoregulation in vivo. Although RutR structures have been determined previously, they were deposited in the Protein Data Bank without accompanying publications. All of them have uracil bound in the effector-binding site, representing the inactive form of the regulator. We determined the crystal structure of an unliganded mutant RutR protein and provide a structural basis for the use of uracil as sole effector molecule and the exclusion of the very similar thymine from the ligand-binding pocket.

Loading Institute Biomedicina Of Valencia Del Consejo Superior Of Investigaciones Cientificas Ibv Csic collaborators
Loading Institute Biomedicina Of Valencia Del Consejo Superior Of Investigaciones Cientificas Ibv Csic collaborators