Time filter

Source Type

Teijeiro J.M.,National University of Rosario | Teijeiro J.M.,CONICET | Roldan M.L.,National University of Rosario | Marini P.E.,National University of Rosario | Marini P.E.,Institute Biologia Molecular Y Celular Of Rosario
Cell and Tissue Research | Year: 2016

In many mammals, upon entry into the female reproductive tract, a subpopulation of sperm is stored in the oviduct forming a functional reservoir. In the oviducts of pig and cow, Annexin A2 (AnxA2) has been linked to the binding of sperm. This protein may exist as a monomer or bound to S100A10 and both forms are associated with different biological functions. S100A10 has not yet been reported in the oviduct. The objective of this work is to analyze for the presence of S100A10 in the oviduct and to advance the study of AnxA2 and S100A10 in this organ. This work shows the presence of both proteins, AnxA2 and S100A10, in the oviduct of human, pig, cow, cat, dog and rabbit. At least in pig, AnxA2 is found devoid of S100A10 in the outer surface of the apical plasma membrane of oviductal epithelial cells, indicating that it binds to sperm as a monomer or in association with proteins different from S100A10. In the apical cytoplasm of pig oviductal epithelial cells, AnxA2 is associated with S100A10. In primary culture of porcine oviductal cells, the expression of ANXA2 is increased by progesterone, while the expression of S100A10 is increased by progesterone and estradiol. The widespread detection of both proteins in the oviduct of mammals indicates a probable conserved function in this organ. In summary, S100A10 and AnxA2 are widespread in the mammalian oviduct but AnxA2 binds sperm in vivo devoid of S100A10 and may be related to reservoir formation. © 2015, Springer-Verlag Berlin Heidelberg.

Abriata L.A.,Institute Biologia Molecular Y Celular Of Rosario
Concepts in Magnetic Resonance Part A: Bridging Education and Research | Year: 2012

This work describes two activities designed to introduce students into the use of NMR spectroscopy for the analysis of biological fluids. In the first activity, 1H spectra of common beverages are acquired and analyzed to identify their most abundant constituents based on computer-aided comparison against known spectra of metabolites. In the second activity, the utilization of glucose by yeast is followed by collecting 1H spectra over time, and the evolution of substrates and products is analyzed. The possibility of tailoring these activities to different levels and course scopes is discussed, together with potential alternative experiments and analyses. © 2012 Wiley Periodicals, Inc.

Asencion Diez M.D.,CONICET | Peiru S.,Institute Biologia Molecular Y Celular Of Rosario | Demonte A.M.,CONICET | Gramajo H.,Institute Biologia Molecular Y Celular Of Rosario | Iglesias A.A.,CONICET
Journal of Bacteriology | Year: 2012

Streptomyces coelicolor exhibits a major secondary metabolism, deriving important amounts of glucose to synthesize pigmented antibiotics. Understanding the pathways occurring in the bacterium with respect to synthesis of oligo- and polysaccharides is of relevance to determine a plausible scenario for the partitioning of glucose-1-phosphate into different metabolic fates. We report the molecular cloning of the genes coding for UDP- and ADP-glucose pyrophosphorylases as well as for glycogen synthase from genomic DNA of S. coelicolor A3(2). Each gene was heterologously expressed in Escherichia coli cells to produce and purify to electrophoretic homogeneity the respective enzymes. UDP-glucose pyrophosphorylase (UDP-Glc PPase) was characterized as a dimer exhibiting a relatively high V max in catalyzing UDP-glucose synthesis (270 units/mg) and with respect to dTDP-glucose (94 units/mg). ADP-glucose pyrophosphorylase (ADP-Glc PPase) was found to be tetrameric in structure and specific in utilizing ATP as a substrate, reaching similar activities in the directions of ADP-glucose synthesis or pyrophosphorolysis (V max of 0.15 and 0.27 units/mg, respectively). Glycogen synthase was arranged as a dimer and exhibited specificity in the use of ADP-glucose to elongate α-1,4-glucan chains in the polysaccharide. ADP-Glc PPase was the only of the three enzymes exhibiting sensitivity to allosteric regulation by different metabolites. Mannose-6-phosphate, phosphoenolpyruvate, fructose-6-phosphate, and glucose-6-phosphate behaved as major activators, whereas NADPH was a main inhibitor of ADP-Glc PPase. The results support a metabolic picture where glycogen synthesis occurs via ADP-glucose in S. coelicolor, with the pathway being strictly regulated in connection with other routes involved with oligo- and polysaccharides, as well as with antibiotic synthesis in the bacterium. © 2012, American Society for Microbiology.

Abriata L.A.,Institute Biologia Molecular Y Celular Of Rosario | Abriata L.A.,Ecole Polytechnique Federale de Lausanne | M. Salverda M.L.,Wageningen University | Tomatis P.E.,Institute Biologia Molecular Y Celular Of Rosario | Tomatis P.E.,University of Zurich
FEBS Letters | Year: 2012

A dataset of TEM lactamase variants with different substrate and inhibition profiles was compiled and analyzed. Trends show that loops are the main evolvable regions in these enzymes, gradually accumulating mutations to generate increasingly complex functions. Notably, many mutations present in evolved enzymes are also found in simpler variants, probably originating functional promiscuity. Following a function-stability tradeoff, the increase in functional complexity driven by accumulation of mutations fosters the incorporation of other stability-restoring substitutions, although our analysis suggests they might not be as "global" as generally accepted and seem instead specific to different networks of protein sites. Finally, we show how this dataset can be used to model functional changes in TEMs based on the physicochemical properties of the amino acids. © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

Garcia Silva M.R.,Institute Pasteur Of Montevideo | Tosar J.P.,Institute Pasteur Of Montevideo | Frugier M.,University of Strasbourg | Pantano S.,Institute Pasteur Of Montevideo | And 8 more authors.
Gene | Year: 2010

Over the last years an expanding family of small non-coding RNAs (sRNA) has been identified in eukaryotic genomes which behave as sequence-specific triggers for mRNA degradation, translation repression, heterochromatin formation and genome stability. To achieve their effectors functions, sRNAs associate with members of the Argonaute protein family. Argonaute proteins are segregated into three paralogous groups: the AGO-like subfamily, the PIWI-like subfamily, and the WAGO subfamily (for Worm specific AGO). Detailed phylogenetic analysis of the small RNA-related machinery components revealed that they can be traced back to the common ancestor of eukaryotes. However, this machinery seems to be lost or excessively simplified in some unicellular organisms such as Saccharomyces cerevisiae, Trypanosoma cruzi, Leishmania major and Plasmodium falciparum which are unable to utilize dsRNA to trigger degradation of target RNAs. We reported here a unique ORF encoding for an AGO/PIWI protein in T. cruzi which was expressed in all stages of its life cycle at the transcript as well as the protein level. Database search for remote homologues, revealed the presence of a divergent PAZ domain adjacent to the well supported PIWI domain. Our results strongly suggested that this unique AGO/PIWI protein from T. cruzi is a canonical Argonaute in terms of its domain architecture. We propose to reclassify all Argonaute members from trypanosomatids as a distinctive phylogenetic group representing a new subfamily of Argonaute proteins and propose the generic designation of AGO/PIWI-tryp to identify them. Inside the Trypanosomatid-specific node, AGO/PIWI-tryps were clearly segregated into two paralog groups designated as AGO-tryp and PIWI-tryp according to the presence or absence of a functional link with RNAi-related phenomena, respectively. © 2010 Elsevier B.V.

Discover hidden collaborations