Time filter

Source Type

Daniel Jr. S.G.,Federal Rural University of Rio de Janeiro | Araujo F.R.,Embrapa Gado de Corte | Almeida Jr. N.F.,Federal University of Mato Grosso do Sul | Adi S.S.,Federal University of Mato Grosso do Sul | And 9 more authors.
Memorias do Instituto Oswaldo Cruz | Year: 2010

The sequencing of the complete genome of Anaplasma marginale has enabled the identification of several genes that encode membrane proteins, thereby increasing the chances of identifying candidate immunogens. Little is known regarding the genetic variability of genes that encode membrane proteins in A. marginale isolates. The aim of the present study was to determine the degree of conservation of the predicted amino acid sequences of OMP1, OMP4, OMP5, OMP7, OMP8, OMP10, OMP14, OMP15, SODb, OPAG1, OPAG3, VirB3, VirB9-1, PepA, EF-Tu and AM854 proteins in a Brazilian isolate of A. marginale compared to other isolates. Hence, primers were used to amplify these genes: Omp1, omp4, omp5, omp7, omp8, omp10, omp14, omp15, sodb, opag1, opag3, virb3, VirB9-1, pepA, ef-tu and am854. After polimerase chain reaction amplification, the products were cloned and sequenced using the Sanger method and the predicted amino acid sequence were multi-aligned using the CLUSTALW and MEGA 4 programs, comparing the predicted sequences between the Brazilian, Saint Maries, Florida and A. marginale centrale isolates. With the exception of outer membrane protein (OMP) 7, all proteins exhibited 92-100% homology to the other A. marginale isolates. However, only OMP1, OMP5, EF-Tu, VirB3, SODb and VirB9-1 were selected as potential immunogens capable of promoting cross-protection between isolates due to the high degree of homology (over 72%) also found with A. (centrale) marginale.

Fonseca B.P.F.,Laboratorio Of Tecnologia Diagnostica | Marques C.F.S.,Laboratorio Of Tecnologia Diagnostica | Nascimento L.D.,Laboratorio Of Tecnologia Diagnostica | Mello M.B.,Laboratorio Of Tecnologia Diagnostica | And 8 more authors.
Clinical and Vaccine Immunology | Year: 2011

Hepatitis C virus (HCV) infection is a major burden to public health worldwide, affecting approximately 3% of the human population. Although HCV detection is currently based on reliable tests, the field of medical diagnostics has a growing need for inexpensive, accurate, and quick high-throughput assays. By using the recombinant HCV antigens NS3, NS4, NS5, and Combined, we describe a new bead-based multiplex test capable of detecting HCV infection in human serum samples. The first analysis, made in a singleplex format, showed that each antigen coupled to an individual bead set presented high-level responses for anti-HCV-positive reference serum pools and lower-level responses for the HCV-negative pools. Our next approach was to determine the sensitivity and specificity of each antigen by testing 93 HCV-positive and 93 HCV-negative sera. When assayed in the singleplex format, the NS3, NS4, and NS5 antigens presented lower sensitivity values (50.5%, 51.6%, and 55.9%, respectively) than did the Combined antigen, which presented a sensitivity of 93.5%. All antigens presented 100% specificity. These antigens were then multiplexed in a 4-plex assay, which resulted in increased sensitivity and specificity values, performing with 100% sensitivity and 100% specificity. The positive and negative predictive values for the 4-plex assay were 100%. Although preliminary, this 4-plex assay showed robust results that, aligned with its small-sample-volume requirements and also its cost- and time-effectiveness, make it a reasonable alternative to tests currently used for HCV screening of potentially infected individuals. Copyright © 2011, American Society for Microbiology. All Rights Reserved.

Meuser-Batista M.,Instituto Oswaldo Cruz | Correa J.R.,Instituto Oswaldo Cruz | Carvalho V.F.,Instituto Oswaldo Cruz | De Carvalho Britto C.F.D.P.,Instituto Oswaldo Cruz | And 8 more authors.
American Journal of Pathology | Year: 2011

Although the roles of mast cells (MCs) are essential in many inflammatory and fibrotic diseases, their role in Trypanosoma cruziinduced cardiomyopathy is unexplored. In this study, we treated infected CBA mice with cromolyn, an MC stabilizer, and observed much greater parasitemia and interferon-γ levels, higher mortality, myocarditis, and cardiac damage. Although these data show that MCs are important in controlling acute infection, we observed MC apoptosis in the cardiac tissue and peritoneal cavity of untreated mice. In the heart, pericardial mucosal MC die, perhaps because of reduced amounts of local stem cell factor. Using RT-PCR in purified cardiac MCs, we observed that infection induced transcription of P2X 7 receptor and Fas, two molecules reportedly involved in cell death and inflammatory regulation. In gld/gld mice (FasL -/-), apoptosis of cardiac, but not peritoneal, MCs was decreased. Conversely, infection of P2X 7 -/- mice led to reduced peritoneal, but not cardiac, MC death. These data illustrate the immunomodulatory role played by MCs in T. cruzi infection and the complexity of molecular interactions that control inflammatory pathways in different tissues and compartments. © 2011 American Society for Investigative Pathology.

Bezerra A.G.,Federal Technological University of Parana | Barison A.,Federal University of Parana | Oliveira V.S.,Federal University of Parana | Foti L.,Institute Biologia Molecular do Parana | And 2 more authors.
Journal of Nanoparticle Research | Year: 2012

We report on the interaction of vanadate nanoparticles, produced using the laser ablation in liquids synthesis, with cysteine in biological molecules. Cysteine is a very important amino acid present in most proteins, but also because cysteine and the tripeptide glutathione are the main antioxidant molecules in our body system. Detailed UV-Vis absorption spectra and dynamic light scattering measurements were done to investigate the detection of cysteine in large biological molecules. The intervalence band of the optical absorption spectra shows capability for quantitative cysteine sensing in the μM range in biological macromolecules. Tests included cytoplasmic repetitive antigen and flagellar repetitive antigen proteins of the Trypanosoma cruzi protozoa, as well as the capsid p24 proteins from Human Immunodeficiency Virus type 1 and type 2. Detailed NMR measurements for hydrogen, carbon, and vanadium nuclei show that cysteine in contact with the vanadate looses hydrogen of the sulphydryl side chain, while the vanadate is reduced. The subsequent detachment of two deprotonated molecules to form cystine and the slow return to the vanadate complete the oxidation- reduction cycle. Therefore, the vanadate acts as a charge exchanging catalyst on cysteine to form cystine. The NMR results also indicate that the nanoparticles are not formed by the common orthorhombic V2O5 form. © Springer Science+Business Media B.V. 2012.

Schmidt J.C.,Instituto Carlos Chagas Fiocruz | Schmidt J.C.,Chapeco Region Community University | Soares M.J.,Instituto Carlos Chagas Fiocruz | Goldenberg S.,Institute Biologia Molecular do Parana | And 4 more authors.
Memorias do Instituto Oswaldo Cruz | Year: 2011

The life cycle of the protozoan Trypanosoma cruzi exposes it to several environmental stresses in its invertebrate and vertebrate hosts. Stress conditions are involved in parasite differentiation, but little is known about the stress response proteins involved. We report here the first characterization of stress-induced protein-1 (STI-1) in T. cruzi (TcSTI-1). This co-chaperone is produced in response to stress and mediates the formation of a complex between the stress proteins HSP70 and HSP90 in other organisms. Despite the similarity of TcSTI-1 to STI-1 proteins in other organisms, its expression profile in response to various stress conditions, such as heat shock, acidic pH or nutrient starvation, is quite different. Neither polysomal mRNA nor protein levels changed in exponentially growing epimastigotes cultured under any of the stress conditions studied. Increased levels of TcSTI-1 were observed in epimastigotes subjected to nutritional stress in the late growth phase. Co-immunoprecipitation assays revealed an association between TcSTI-1 and TcHSP70 in T. cruzi epimastigotes. Immunolocalization demonstrated that TcSTI-1 was distributed throughout the cytoplasm and there was some colocalization of TcSTI-1 and TcHSP70 around the nucleus. Thus, TcSTI-1 associates with TcHSP70 and TcSTI-1 expression is induced when the parasites are subjected to stress conditions during specific growth phase.

Discover hidden collaborations