Entity

Time filter

Source Type


Putnam C.D.,University of San Diego | Srivatsan A.,University of San Diego | Nene R.V.,University of San Diego | Martinez S.L.,University of San Diego | And 8 more authors.
Nature Communications | Year: 2016

Gross chromosomal rearrangements (GCRs) play an important role in human diseases, including cancer. The identity of all Genome Instability Suppressing (GIS) genes is not currently known. Here multiple Saccharomyces cerevisiae GCR assays and query mutations were crossed into arrays of mutants to identify progeny with increased GCR rates. One hundred eighty two GIS genes were identified that suppressed GCR formation. Another 438 cooperatively acting GIS genes were identified that were not GIS genes, but suppressed the increased genome instability caused by individual query mutations. Analysis of TCGA data using the human genes predicted to act in GIS pathways revealed that a minimum of 93% of ovarian and 66% of colorectal cancer cases had defects affecting one or more predicted GIS gene. These defects included loss-of-function mutations, copy-number changes associated with reduced expression, and silencing. In contrast, acute myeloid leukaemia cases did not appear to have defects affecting the predicted GIS genes. Source


Da Cunha J.P.C.,Ludwig Institute for Cancer Research | Da Cunha J.P.C.,Butantan Institute | Galante P.A.F.,Ludwig Institute for Cancer Research | De Souza J.E.S.,Ludwig Institute for Cancer Research | And 7 more authors.
BioMed Research International | Year: 2013

Introduction. Cell surface proteins are ideal targets for cancer therapy and diagnosis. We have identified a set of more than 3700 genes that code for transmembrane proteins believed to be at human cell surface. Methods. We used a high-throuput qPCR system for the analysis of 573 cell surface protein-coding genes in 12 primary breast tumors, 8 breast cell lines, and 21 normal human tissues including breast. To better understand the role of these genes in breast tumors, we used a series of bioinformatics strategies to integrates different type, of the datasets, such as KEGG, protein-protein interaction databases, ONCOMINE, and data from, literature. Results. We found that at least 77 genes are overexpressed in breast primary tumors while at least 2 of them have also a restricted expression pattern in normal tissues. We found common signaling pathways that may be regulated in breast tumors through the overexpression of these cell surface protein-coding genes. Furthermore, a comparison was made between the genes found in this report and other genes associated with features clinically relevant for breast tumorigenesis. Conclusions. The expression profiling generated in this study, together with an integrative bioinformatics analysis, allowed us to identify putative targets for breast tumors. © 2013 Júlia Pinheiro Chagas da Cunha et al. Source


Ramalho R.F.,University of Sao Paulo | Ramalho R.F.,Institute Bioinformatica e Biotecnologia | Gelfman S.,Tel Aviv University | De Souza J.E.,Institute Bioinformatica e Biotecnologia | And 4 more authors.
Journal of Molecular Evolution | Year: 2013

Despite evidence that at the interspecific scale, exonic splicing silencers (ESSs) are under negative selection in constitutive exons, little is known about the effects of slightly deleterious polymorphisms on these splicing regulators. Through the application of a modified version of the McDonald-Kreitman test, we compared the normalized proportions of human polymorphisms and human/rhesus substitutions affecting exonic splicing regulators (ESRs) on sequences of constitutive and alternative exons. Our results show a depletion of substitutions and an enrichment of SNPs associated with ESS gain in constitutive exons. Moreover, we show that this evolutionary pattern is also present in a set of ESRs previously involved in the transition from constitutive to skipped exons in the mammalian lineage. The similarity between these two sets of ESRs suggests that the transition from constitutive to skipped exons in mammals is more frequently associated with the inhibition than with the promotion of splicing signals. This is in accordance with the hypothesis of a constitutive origin of exon skipping and corroborates previous findings about the antagonistic role of certain exonic splicing enhancers. © 2013 Springer Science+Business Media New York. Source


Ribeiro-dos-Santos A.M.,Federal University of Para | da Silva V.L.,Federal University of Para | da Silva V.L.,Institute Bioinformatica e Biotecnologia | de Souza J.E.S.,Institute Bioinformatica e Biotecnologia | And 2 more authors.
BMC Genomics | Year: 2015

Background: Differences in gene expression have a significant role in the diversity of phenotypes in humans. Here we integrated human public data from ENCODE, 1000 Genomes and Geuvadis to explore the populational landscape of INDELs affecting transcription factor-binding sites (TFBS). A significant fraction of TFBS close to the transcription start site of known genes is affected by INDELs with a consequent effect at the expression of the associated gene. Results: Hundreds of TFBS-affecting INDELs (TFBS-ID) show a differential frequency between human populations, suggesting a role of natural selection in the spread of such variant INDELs. A comparison with a dataset of known human genomic regions under natural selection allowed us to identify several cases of TFBS-ID likely involved in populational adaptations. Ontology analyses on the differential TFBS-ID further indicated several biological processes under natural selection in different populations. Conclusion: Together, our results strongly suggest that INDELs have an important role in modulating gene expression patterns in humans. The dataset we make available, together with other data reporting variability at both regulatory and coding regions of genes, represent a powerful tool for studies aiming to better understand the evolution of gene regulatory networks in humans. © 2015 Ribeiro-dos-Santos et al. Source

Discover hidden collaborations