Time filter

Source Type

Ho V.,University of Montréal | Parent M.-E.,Institute Armand Frappier Research Center | Abrahamowicz M.,McGill University | Danieli C.,McGill University | And 4 more authors.
Cancer Causes and Control | Year: 2017

Purpose: Although evidence has accumulated that recreational physical activities (PA) may reduce lung cancer risk, there is little evidence concerning the possible role of a potentially more important source of PA, namely occupational PA. We investigated both recreational and lifetime occupational PA in relation to lung cancer risk in a population-based case–control study in Montreal, Canada (NCASES = 727; NCONTROLS = 1,351). Methods: Unconditional logistic regression was used to estimate odds ratios (OR), separately for men and women, adjusting for smoking, exposure to occupational carcinogens, and sociodemographic and lifestyle factors. Results: In both sexes, increasing recreational PA was associated with a lower lung cancer risk (ORMEN = 0.66, 95% confidence interval (CI) 0.47–0.92; ORWOMEN = 0.55, 95% CI 0.34–0.88, comparing the highest versus lowest tertiles). For occupational PA, no association was observed among women, while increasing occupational PA was associated with increased risk among men (ORMEN = 1.96, 95% CI 1.27–3.01). ORs were not modified by occupational lung carcinogen exposure, body mass index, and smoking level; results were similar across lung cancer histological types. Conclusions: Our results support the previous findings for recreational PA and lung cancer risk. Unexpectedly, our findings suggest a positive association for occupational PA; this requires replication and more detailed investigation. © 2017, Springer International Publishing Switzerland.


Whiteduck-Leveillee K.,Agriculture and Agri Food Canada | Whiteduck-Leveillee J.,Agriculture and Agri Food Canada | Cloutier M.,Agriculture and Agri Food Canada | Tambong J.T.,Agriculture and Agri Food Canada | And 9 more authors.
Systematic and Applied Microbiology | Year: 2016

A study on the taxonomic classification of Arcobacter species was performed on the cultures isolated from various fecal sources where an Arcobacter strain AF1078T from human waste septic tank near Ottawa, Ontario, Canada was characterized using a polyphasic approach. Genetic investigations including 16S rRNA, atpA, cpn60, gyrA, gyrB and rpoB gene sequences of strain AF1078T are unique in comparison with other arcobacters. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that the strain is most closely related to Arcobacter lanthieri and Arcobacter cibarius. Analyses of atpA, cpn60, gyrA, gyrB and rpoB gene sequences suggested that strain AF1078T formed a phylogenetic lineage independent of other species in the genus. Whole-genome sequence, DNA-DNA hybridization, fatty acid profile and phenotypic analysis further supported the conclusion that strain AF1078T represents a novel Arcobacter species, for which the name Arcobacter faecis sp. nov. is proposed, with type strain AF1078T (=LMG 28519T; CCUG 66484T). © 2015.


Whiteduck-Leveillee K.,Agriculture and Agri Food Canada | Whiteduck-Leveillee J.,Agriculture and Agri Food Canada | Cloutier M.,Agriculture and Agri Food Canada | Tambong J.T.,Agriculture and Agri Food Canada | And 10 more authors.
International Journal of Systematic and Evolutionary Microbiology | Year: 2015

A study was undertaken to determine the prevalence and diversity of species of the genus Arcobacter in pig and dairy cattle manure, which led to the identification of strains AF1440T, AF1430 and AF1581. Initially identified as Arcobacter butzleri based on colony morphology and initial PCR-confirmation tests, analyses of 16S rRNA gene sequences of these strains confirmed that they belonged to the genus Arcobacter and were different from all known species of the genus. The isolates formed a distinct group within the genus Arcobacter based on their 16S rRNA, gyrB, rpoB, cpn60, gyrA and atpA gene sequences and fatty acid profiles. Their unique species status was further supported by physiological properties and DNA–DNA hybridization that allowed phenotypic and genotypic differentiation of the strains from other species of the genus Arcobacter. The isolates were found to be oxidase, catalase and esterase positive and urease negative; they grew well at 30 8C under microaerophilic conditions and produced nitrite and acetoin. Based on their common origin and various physiological properties, it is proposed that the isolates are classified as members of a novel species with the name Arcobacter lanthieri sp. nov. The type strain is AF1440T (5LMG 28516T5CCUG 66485T); strains AF1430 (5LMG 285155CCUG 66486) and AF1581 (5LMG 285175CCUG 66487) are reference strains. © 2015 IUMS.


PubMed | Ryerson University, Environment Canada, Institute Armand Frappier Research Center and Agriculture and Agri Food Canada
Type: Journal Article | Journal: Systematic and applied microbiology | Year: 2016

A study on the taxonomic classification of Arcobacter species was performed on the cultures isolated from various fecal sources where an Arcobacter strain AF1078(T) from human waste septic tank near Ottawa, Ontario, Canada was characterized using a polyphasic approach. Genetic investigations including 16S rRNA, atpA, cpn60, gyrA, gyrB and rpoB gene sequences of strain AF1078(T) are unique in comparison with other arcobacters. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that the strain is most closely related to Arcobacter lanthieri and Arcobacter cibarius. Analyses of atpA, cpn60, gyrA, gyrB and rpoB gene sequences suggested that strain AF1078(T) formed a phylogenetic lineage independent of other species in the genus. Whole-genome sequence, DNA-DNA hybridization, fatty acid profile and phenotypic analysis further supported the conclusion that strain AF1078(T) represents a novel Arcobacter species, for which the name Arcobacter faecis sp. nov. is proposed, with type strain AF1078(T) (=LMG 28519(T); CCUG 66484(T)).


Nehdi A.,McGill University | Nehdi A.,King Saud bin Abdulaziz University for Health Sciences | Sean P.,McGill University | Linares I.,University of Ottawa | And 4 more authors.
PLoS ONE | Year: 2014

Genetic deletion of both 4E-BP1 and 4E-BP2 was found to protect cells against viral infections. Here we demonstrate that the individual loss of either 4E-BP1 or 4E-BP2 in mouse embryonic fibroblasts (MEFs) is sufficient to confer viral resistance. shRNA-mediated silencing of 4E-BP1 or 4E-BP2 renders MEFs resistant to viruses, and compared to wild type cells, MEFs knockout for either 4EBP1 or 4E-BP2 exhibit enhanced translation of Irf-7 and consequently increased innate immune response to viruses. Accordingly, the replication of vesicular stomatitis virus, encephalomyocarditis virus, influenza virus and Sindbis virus is markedly suppressed in these cells. Importantly, expression of either 4E-BP1 or 4EBP2 in double knockout or respective single knockout cells diminishes their resistance to viral infection. Our data show that loss of 4E-BP1 or 4E-BP2 potentiates innate antiviral immunity. These results provide further evidence for translational control of innate immunity and support targeting translational effectors as an antiviral strategy. © 2014 Nehdi et al.


Whiteduck-Leveillee J.,Agriculture and Agri Food Canada | Cloutier M.,Agriculture and Agri Food Canada | Topp E.,Agriculture and Agri Food Canada | Lapen D.R.,Agriculture and Agri Food Canada | And 3 more authors.
Journal of Microbiological Methods | Year: 2016

As the pathogenicity of Arcobacter species might be associated with various virulence factors, this study was aimed to develop and optimize three single-tube multiplex PCR (mPCR) assays that can efficiently detect multiple virulence-associated genes (VAGs) in Arcobacter spp. including the Arcobacter butzleri, Arcobacter cryaerophilus and Arcobacter skirrowii, respectively. The recognized target virulence factors used in the study were fibronectin binding protein (cj1349), filamentous hemagglutinin (hecA), hemolysin activation protein (hecB), hemolysin (tlyA), integral membrane protein virulence factor (mviN), invasin (ciaB), outer membrane protein (irgA) and phospholipase (pldA). Identical results were obtained between singleplex PCR and mPCR assays and no cross- and/or non-specific amplification products were obtained when tested against other closely related bacterial species. The sensitivities of these three mPCR assays were ranging from 1ngμL-1 to 100ngμL-1 DNA. The developed assays with combinations of duplex or triplex PCR primer pairs of VAGs were further evaluated and validated by applying them to isolates of the A. butzleri, A. cryaerophilus and A. skirrowii recovered from fecal samples of human and animal origins. The findings revealed that the distribution of the ciaB (90%), mviN (70%), tlyA (50%) and pldA (45%) genes among these target species was significantly higher than the hecA (16%), hecB (10%) and each of irgA and cj1349 (6%) genes, respectively. The newly developed mPCR assays can be used as rapid technique and useful markers for the detection, prevalence and profiling of VAGs in the Arcobacter spp. Moreover, these assays can easily be performed with a high throughput to give a presumptive identification of the causal pathogen in epidemiological investigation of human infections. © 2016 Elsevier B.V.


Lalande J.,Ecole Polytechnique de Montréal | Villemur R.,Institute Armand Frappier Research Center | Deschenes L.,Ecole Polytechnique de Montréal
Microbial Ecology | Year: 2013

Denaturing gradient gel electrophoresis (DGGE) has been and remains extensively used to assess and monitor the effects of various treatments on soil bacterial communities. Considering only abundant phylotypes, the diversity estimates produced by this technique have been proven to be uncorrelated to true community diversity. The aim of this paper was to develop a framework to estimate a community's true diversity from DGGE. Developed using in silico DGGE profiles generated from published pyrosequencing datasets, this framework elongates the rank-abundance distributions (RADs) drawn by band quantification using the peak-to-signal ratio (PSR) parameter, which was proven to be related to bacterial richness. The ability to compare DGGE-based diversity estimates to the true diversity of communities led to a unique opportunity to identify potential pitfalls when analyzing DGGE gels with commercial analysis software programs and gain insight into the process of DNA band clustering in the profiles. Bacterial diversity was compared through richness, Shannon, and Simpson's 1/D indices. Intermediate results demonstrated that, even though commercial gel analysis software programs were unable to produce consistent results throughout all samples, a newly developed Matlab-based framework unraveled the dominance profiles of communities from band quantification. Elongating these partial RADs using the PSRs extracted from the DGGE profiles chiefly made it possible to accurately estimate the true diversity of communities. For all the samples analyzed, the estimated Shannon and Simpson's 1/D were accurate at ±10 %. Richness estimations were less accurate, ranging from -11 to 31 % of the expected values. The framework showed great potential to study the structure and diversity of soil bacterial communities. © 2013 Springer Science+Business Media New York.


Laprade N.,Agriculture and Agri Food Canada | Cloutier M.,Agriculture and Agri Food Canada | Lapen D.R.,Agriculture and Agri Food Canada | Topp E.,Agriculture and Agri Food Canada | And 3 more authors.
Journal of Microbiological Methods | Year: 2016

Campylobacter species are one of the leading causes of bacterial gastroenteritis in humans worldwide. This twofold study was sought to: i) develop and optimize four single-tube multiplex PCR (mPCR) assays for the detection of six virulence (ciaB, dnaJ, flaA, flaB, pldA and racR), three toxin (cdtA, cdtB and cdtC) and one antibiotic resistance tet(O) genes in thermophilic Campylobacter spp. and ii) apply and evaluate the developed mPCR assays by testing 470 previously identified C. jejuni, C. coli and C. lari isolates from agricultural water. In each mPCR assay, a combination of two or three sets of primer pairs for virulence, antibiotic resistance and toxin (VAT) genes was used and optimized. Assay 1 was developed for the detection of dnaJ, racR and cdtC genes with expected amplification sizes of 720, 584 and 182 bp. Assay 2 generated PCR amplicons for tet(O) and cdtA genes of 559 and 370 bp. Assay 3 amplified cdtB ciaB, and pldA genes with PCR amplicon sizes of 620, 527 and 385 bp. Assay 4 was optimized for flaA and flaB genes that generated PCR amplicons of 855 and 260 bp. The primer pairs and optimized PCR protocols did not show interference and/or cross-amplification with each other and generated the expected size of amplification products for each target VAT gene for the C. jejuni ATCC 33291 reference strain. Overall, all ten target VAT genes were detected at a variable frequency in tested isolates of thermophilic Campylobacter spp. where cdtC, flaB, ciaB, cdtB, cdtA and pldA were commonly detected compared to the flaA, racR, dnaJ and tet(O) genes which were detected with less frequency. The developed mPCR assays are simple, rapid, reliable and sensitive tools for simultaneously assessing potential pathogenicity and antibiotic resistance profiling in thermophilic Campylobacter spp. The mPCR assays will be useful in diagnostic and analytical settings for routine screening of VAT characteristics of Campylobacter spp. as well as being applicable in epidemiological studies by providing information that could be related to the risk of human infection. © 2016.


PubMed | Institute Armand Frappier Research Center and Agriculture and Agri Food Canada
Type: | Journal: Journal of microbiological methods | Year: 2016

As the pathogenicity of Arcobacter species might be associated with various virulence factors, this study was aimed to develop and optimize three single-tube multiplex PCR (mPCR) assays that can efficiently detect multiple virulence-associated genes (VAGs) in Arcobacter spp. including the Arcobacter butzleri, Arcobacter cryaerophilus and Arcobacter skirrowii, respectively. The recognized target virulence factors used in the study were fibronectin binding protein (cj1349), filamentous hemagglutinin (hecA), hemolysin activation protein (hecB), hemolysin (tlyA), integral membrane protein virulence factor (mviN), invasin (ciaB), outer membrane protein (irgA) and phospholipase (pldA). Identical results were obtained between singleplex PCR and mPCR assays and no cross- and/or non-specific amplification products were obtained when tested against other closely related bacterial species. The sensitivities of these three mPCR assays were ranging from 1ngL(-1) to 100ngL(-1) DNA. The developed assays with combinations of duplex or triplex PCR primer pairs of VAGs were further evaluated and validated by applying them to isolates of the A. butzleri, A. cryaerophilus and A. skirrowii recovered from fecal samples of human and animal origins. The findings revealed that the distribution of the ciaB (90%), mviN (70%), tlyA (50%) and pldA (45%) genes among these target species was significantly higher than the hecA (16%), hecB (10%) and each of irgA and cj1349 (6%) genes, respectively. The newly developed mPCR assays can be used as rapid technique and useful markers for the detection, prevalence and profiling of VAGs in the Arcobacter spp. Moreover, these assays can easily be performed with a high throughput to give a presumptive identification of the causal pathogen in epidemiological investigation of human infections.


PubMed | Institute Armand Frappier Research Center and Agriculture and Agri Food Canada
Type: | Journal: Journal of microbiological methods | Year: 2016

Campylobacter species are one of the leading causes of bacterial gastroenteritis in humans worldwide. This twofold study was sought to: i) develop and optimize four single-tube multiplex PCR (mPCR) assays for the detection of six virulence (ciaB, dnaJ, flaA, flaB, pldA and racR), three toxin (cdtA, cdtB and cdtC) and one antibiotic resistance tet(O) genes in thermophilic Campylobacter spp. and ii) apply and evaluate the developed mPCR assays by testing 470 previously identified C. jejuni, C. coli and C. lari isolates from agricultural water. In each mPCR assay, a combination of two or three sets of primer pairs for virulence, antibiotic resistance and toxin (VAT) genes was used and optimized. Assay 1 was developed for the detection of dnaJ, racR and cdtC genes with expected amplification sizes of 720, 584 and 182bp. Assay 2 generated PCR amplicons for tet(O) and cdtA genes of 559 and 370bp. Assay 3 amplified cdtB ciaB, and pldA genes with PCR amplicon sizes of 620, 527 and 385bp. Assay 4 was optimized for flaA and flaB genes that generated PCR amplicons of 855 and 260bp. The primer pairs and optimized PCR protocols did not show interference and/or cross-amplification with each other and generated the expected size of amplification products for each target VAT gene for the C. jejuni ATCC 33291 reference strain. Overall, all ten target VAT genes were detected at a variable frequency in tested isolates of thermophilic Campylobacter spp. where cdtC, flaB, ciaB, cdtB, cdtA and pldA were commonly detected compared to the flaA, racR, dnaJ and tet(O) genes which were detected with less frequency. The developed mPCR assays are simple, rapid, reliable and sensitive tools for simultaneously assessing potential pathogenicity and antibiotic resistance profiling in thermophilic Campylobacter spp. The mPCR assays will be useful in diagnostic and analytical settings for routine screening of VAT characteristics of Campylobacter spp. as well as being applicable in epidemiological studies by providing information that could be related to the risk of human infection.

Loading Institute Armand Frappier Research Center collaborators
Loading Institute Armand Frappier Research Center collaborators