Inspiralia Tecnologias Avanzadas

Estrada, Spain

Inspiralia Tecnologias Avanzadas

Estrada, Spain

Time filter

Source Type

Chica M.,Inspiralia Tecnologias Avanzadas | Chica M.,European Center for Soft Computing | Campoy P.,Technical University of Madrid
Journal of Food Engineering | Year: 2012

In this paper, we propose a system for authenticating local bee pollen against fraudulent samples using image processing and classification techniques. Our system is based on the colour properties of bee pollen loads and the use of one-class classifiers to reject unknown pollen samples. The latter classification techniques allow us to tackle the major difficulty of the problem, the existence of many possible fraudulent pollen types. Also presented is a multi-classifier model with an ambiguity discovery process to fuse the output of the one-class classifiers. The method is validated by authenticating Spanish bee pollen types, the overall accuracy of the final system of being 94%. Therefore, the system is able to rapidly reject the non-local pollen samples with inexpensive hardware and without the need to send the product to the laboratory. © 2012 Elsevier Ltd. All rights reserved.


Chica M.,Inspiralia Tecnologias Avanzadas | Chica M.,European Center for Soft Computing | Campoy P.,Technical University of Madrid | Perez M.A.,Inspiralia Tecnologias Avanzadas | And 3 more authors.
Computers in Biology and Medicine | Year: 2012

Objective: In this paper we address the problem of recognising the movement intentions of patients restricted to a medical bed. The developed recognition system will be used to implement a natural human-machine interface to move a medical bed by means of the slight movements of patients with reduced mobility. Methods and material: Our proposal uses pressure map sequences as input and presents a novel system based on artificial neural networks to recognise the movement intentions. The system analyses each pressure map in real-time and classifies the raw information into output classes which represent these intentions. The complexity of the recognition problem is high because of the multiple body characteristics and distinct ways of communicating intentions. To address this problem, a complete processing chain was developed consisting of image processing algorithms, a knowledge extraction process, and a multilayer perceptron (MLP) classification model. Results: Different configurations of the MLP have been investigated and quantitatively compared. The accuracy of our approach is high, obtaining an accuracy of 87%. The model was compared with five well-known classification paradigms. The performance of a reduced model, obtained by through feature selection algorithms, was found to be better and less time-consuming than the original model. The whole proposal has been validated with real patients in pre-clinical tests using the final medical bed prototype. Conclusions: The proposed approach produced very promising results, outperforming existing classification approaches. The excellent behaviour of the recognition system will enable its use in controlling the movements of the bed, in several degrees of freedom, by the patient with his/her own body. © 2011 Elsevier Ltd.


Chica M.,Inspiralia Tecnologias Avanzadas | Chica M.,European Center for Soft Computing
Microscopy Research and Technique | Year: 2012

A novel method for authenticating pollen grains in bright-field microscopic images is presented in this work. The usage of this new method is clear in many application fields such as bee-keeping sector, where laboratory experts need to identify fraudulent bee pollen samples against local known pollen types. Our system is based on image processing and one-class classification to reject unknown pollen grain objects. The latter classification technique allows us to tackle the major difficulty of the problem, the existence of many possible fraudulent pollen types, and the impossibility of modeling all of them. Different one-class classification paradigms are compared to study the most suitable technique for solving the problem. In addition, feature selection algorithms are applied to reduce the complexity and increase the accuracy of the models. For each local pollen type, a one-class classifier is trained and aggregated into a multiclassifier model. This multiclassification scheme combines the output of all the one-class classifiers in a unique final response. The proposed method is validated by authenticating pollen grains belonging to different Spanish bee pollen types. The overall accuracy of the system on classifying fraudulent microscopic pollen grain objects is 92.3%. The system is able to rapidly reject pollen grains, which belong to nonlocal pollen types, reducing the laboratory work and effort. The number of possible applications of this authentication method in the microscopy research field is unlimited. © 2012 Wiley Periodicals, Inc.


PubMed | Inspiralia Tecnologias Avanzadas
Type: Journal Article | Journal: Microscopy research and technique | Year: 2012

A novel method for authenticating pollen grains in bright-field microscopic images is presented in this work. The usage of this new method is clear in many application fields such as bee-keeping sector, where laboratory experts need to identify fraudulent bee pollen samples against local known pollen types. Our system is based on image processing and one-class classification to reject unknown pollen grain objects. The latter classification technique allows us to tackle the major difficulty of the problem, the existence of many possible fraudulent pollen types, and the impossibility of modeling all of them. Different one-class classification paradigms are compared to study the most suitable technique for solving the problem. In addition, feature selection algorithms are applied to reduce the complexity and increase the accuracy of the models. For each local pollen type, a one-class classifier is trained and aggregated into a multiclassifier model. This multiclassification scheme combines the output of all the one-class classifiers in a unique final response. The proposed method is validated by authenticating pollen grains belonging to different Spanish bee pollen types. The overall accuracy of the system on classifying fraudulent microscopic pollen grain objects is 92.3%. The system is able to rapidly reject pollen grains, which belong to nonlocal pollen types, reducing the laboratory work and effort. The number of possible applications of this authentication method in the microscopy research field is unlimited.


PubMed | Inspiralia Tecnologias Avanzadas
Type: Journal Article | Journal: Computers in biology and medicine | Year: 2012

In this paper we address the problem of recognising the movement intentions of patients restricted to a medical bed. The developed recognition system will be used to implement a natural human-machine interface to move a medical bed by means of the slight movements of patients with reduced mobility.Our proposal uses pressure map sequences as input and presents a novel system based on artificial neural networks to recognise the movement intentions. The system analyses each pressure map in real-time and classifies the raw information into output classes which represent these intentions. The complexity of the recognition problem is high because of the multiple body characteristics and distinct ways of communicating intentions. To address this problem, a complete processing chain was developed consisting of image processing algorithms, a knowledge extraction process, and a multilayer perceptron (MLP) classification model.Different configurations of the MLP have been investigated and quantitatively compared. The accuracy of our approach is high, obtaining an accuracy of 87%. The model was compared with five well-known classification paradigms. The performance of a reduced model, obtained by through feature selection algorithms, was found to be better and less time-consuming than the original model. The whole proposal has been validated with real patients in pre-clinical tests using the final medical bed prototype.The proposed approach produced very promising results, outperforming existing classification approaches. The excellent behaviour of the recognition system will enable its use in controlling the movements of the bed, in several degrees of freedom, by the patient with his/her own body.

Loading Inspiralia Tecnologias Avanzadas collaborators
Loading Inspiralia Tecnologias Avanzadas collaborators