San Diego, CA, United States
San Diego, CA, United States

Time filter

Source Type

Patent
University of Pennsylvania and Inovio Pharmaceuticals, Inc. | Date: 2016-11-21

Improved anti-HPV immunogens and nucleic acid molecules that encode them are disclosed. Immunogens disclosed include those having consensus HPV39 E6E7 and HPV45 E6E7. Pharmaceutical composition, recombinant vaccines comprising DNA plasmid and live attenuated vaccines are disclosed as well methods of inducing an immune response in an individual against HPV are disclosed.


Sardesai N.Y.,Inovio Pharmaceuticals, Inc. | Weiner D.B.,University of Pennsylvania
Current Opinion in Immunology | Year: 2011

A number of noteworthy technology advances in DNA vaccines research and development over the past few years have led to the resurgence of this field as a viable vaccine modality. Notably, these include - optimization of DNA constructs; development of new DNA manufacturing processes and formulations; augmentation of immune responses with novel encoded molecular adjuvants; and the improvement in new in vivo delivery strategies including electroporation (EP). Of these, EP mediated delivery has generated considerable enthusiasm and appears to have had a great impact in vaccine immunogenicity and efficacy by increasing antigen delivery upto a 1000 fold over naked DNA delivery alone. This increased delivery has resulted in an improved in vivo immune response magnitude as well as response rates relative to DNA delivery by direct injection alone. Indeed the immune responses and protection from pathogen challenge observed following DNA administration via EP in many cases are comparable or superior to other well studied vaccine platforms including viral vectors and live/attenuated/inactivated virus vaccines. Significantly, the early promise of EP delivery shown in numerous pre-clinical animal models of many different infectious diseases and cancer are now translating into equally enhanced immune responses in human clinical trials making the prospects for this vaccine approach to impact diverse disease targets tangible. © 2011 Elsevier Ltd.


Patent
University of Pennsylvania and Inovio Pharmaceuticals, Inc. | Date: 2016-07-11

Provided herein are consensus amino acid sequences of prostate antigens that are capable of breaking tolerance in a targeted species, including PSA, PSMA, STEAP and PSCA antigens. Also provided are nucleic acid sequences that encode one or more consensus amino acid sequences of prostate antigens PSA, PSMA, STEAP and PSCA, as well as genetic constructs/vectors and vaccines expressing the sequences. Also provided herein are methods for generating an autoimmune response against prostate cancer cells by administering one or more of the vaccines, proteins, and/or nucleic acid sequences that are provided.


Patent
University of Pennsylvania and Inovio Pharmaceuticals, Inc. | Date: 2015-08-03

Provided herein is a nucleic acid comprising consensus amino acid sequence of foot-and-mouth disease FMDV VP1-4 coat proteins of FMDV subtypes A, Asia 1, C, O, SAT1, SAT2, and SAT3 as well as plasmids and vaccines expressing the sequences. Also provided herein is methods for generating an immune response against one or more FMDV subtypes using the vaccine as described above as well as methods for deciphering between vaccinated mammals with the vaccine and those that are infected with FMDV.


Patent
University of Pennsylvania and Inovio Pharmaceuticals, Inc. | Date: 2014-03-17

The present invention relates to synthetic, consensus foot-and-mouth disease virus (FMDV) immunogenic proteins and nucleic acid molecule encoding such proteins, to vaccines against FMDV, to methods for inducing immune responses against FMVD, to methods for distinguishing between individuals infected with FMDV versus those vaccinated against FMDV, and methods of prophylactically and/or therapeutically immunizing individuals against FMDV.


Patent
University of Pennsylvania and Inovio Pharmaceuticals, Inc. | Date: 2015-01-06

Disclosed herein is a vaccine comprising an antigen and PD1 antibody and/or PDL1 antibody. Also disclosed herein is a method for enhancing an immune response in a subject. The method may comprise administering the vaccine to the subject in need thereof.


Patent
University of Pennsylvania and Inovio Pharmaceuticals, Inc. | Date: 2014-11-24

Provided herein are consensus amino acid sequences of prostate antigens that are capable of breaking tolerance in a targeted species, including PSA, PSMA, STEAP and PSCA antigens. Also provided are nucleic acid sequences that encode one or more consensus amino acid sequences of prostate antigens PSA, PSMA, STEAP and PSCA, as well as genetic constructs/vectors and vaccines expressing the sequences. Also provided herein are methods for generating an autoimmune response against prostate cancer cells by administering one or more of the vaccines, proteins, and/or nucleic acid sequences that are provided.


Patent
University of Pennsylvania and Inovio Pharmaceuticals, Inc. | Date: 2014-11-06

The present invention is directed to an effective HIV vaccine will most likely require the induction of strong T-cell responses, broadly neutralizing antibodies (bNAbs), and the elicitation of antibody-dependent cellular cytotoxicity (ADCC). Previously, we demonstrated the induction of strong HIV/SIV cellular immune responses in macaques and humans using synthetic consensus DNA immunogens delivered via adaptive electroporation (EP). However, the ability of this improved DNA approach to prime for relevant antibody responses has not been previously studied. Here, we investigate the immunogenicity of consensus DNA constructs encoding gp140 sequences from HIV-1 subtypes A, B, C and D in a DNA prime protein boost vaccine regimen. Mice and Guinea pigs were primed with single and multi-clade DNA via EP and boosted with recombinant gp120 protein. Sera were analyzed for gp120 binding and induction of neutralizing antibody activity. Immunization with recombinant Env protein alone induced low-titer binding antibodies with limited neutralization breath. In contrast the synthetic DNA prime protein boost protocol was induced significantly higher antibody binding titers. Furthermore, sera from DNA prime-protein boost groups were able to neutralize a broader range of viruses in a panel of tier 1 clade B viruses as well as multiple tier 1 clade A and clade C viruses. Further investigation of synthetic DNA prime+adaptive EP plus protein boost appears warranted.


Patent
University of Pennsylvania and Inovio Pharmaceuticals, Inc. | Date: 2014-10-02

Disclosed herein is a vaccine comprising an antigen and IL-33. Also disclosed herein is a method for increasing an immune response in a subject in need thereof. Further disclosed herein is a method for treating cancer in a subject in need thereof. The methods may comprise administering the vaccine to the subject.


Patent
University of Pennsylvania and Inovio Pharmaceuticals, Inc. | Date: 2014-08-04

Provided herein are nucleic acid sequences that encode novel consensus amino acid sequences of HA Influenza A of serotype H7N9 alone and in combination with HA hemagglutinin and/or influenza B hemagglutinin, as well as genetic constructs/vectors and vaccines expressing the sequences. Also provided herein are methods for generating an immune response against one or more influenza A serotypes and/or influenza B serotypes, or combinations thereof, using the vaccines that are provided.

Loading Inovio Pharmaceuticals, Inc. collaborators
Loading Inovio Pharmaceuticals, Inc. collaborators