Taoyuan, Taiwan
Taoyuan, Taiwan

Time filter

Source Type

Patent
Inotera Memories | Date: 2015-06-22

A semiconductor device includes a semiconductor device includes an interposer having a first side and a second side opposite to the first side, wherein the interposer comprises a redistribution layer (RDL), and the RDL comprises a first passivation layer on the first side and a second passivation layer on the second side; at least one active chip mounted on the first passivation layer on the first side through a plurality of first bumps penetrating through the first passivation layer; a molding compound disposed on the first side, the molding compound covering the at least one active chip and a top surface of the first passivation layer; and a plurality of solder bumps mounted on the first passivation layer on the second side.


Patent
Inotera Memories | Date: 2015-06-21

The present disclosure provides a semiconductor device including a substrate, a first active region, a second active region, and a gate structure. The first active region and the second active region are disposed in the substrate. The gate structure includes a bottom, a first sidewall attached to the first active region, and a second sidewall attached to the second active region. The first sidewall and the bottom have a first point of intersection, and the first sidewall and a first horizontal line starting from the first point toward the substrate have a first included angle. The second sidewall and the bottom have a second point of intersection, and the second sidewall and a second horizontal line starting from the second point toward the substrate have a second included angle. The first included angle is different from the second included angle. A method for manufacturing a semiconductor device is provided herein.


Patent
Inotera Memories | Date: 2015-06-08

The instant disclosure relates to a semiconductor device includes a semiconductor substrate, a plurality of buried bit lines, a plurality of insulating structures, and a plurality of self-aligned spacers. The semiconductor substrate has a plurality of active areas defined thereon. The buried bit lines are disposed in the semiconductor substrate, wherein two of the buried bit lines are positioned in each of the active areas. The insulating structures are disposed on the semiconductor substrate, wherein each of the insulating structures is positioned on and opposite to the two of the buried bit lines. The self-aligned spacers are disposed on the sidewalls of the insulating structures respectively to partially expose the surface of the semiconductor substrate.


Patent
Inotera Memories | Date: 2015-03-24

The present invention provides a novel method of manufacturing the probe unit and a tip assemble and disassemble procedure for test tools, which includes a body with a joint portion and a base portion and a probe tip extending from one side of the base portion opposite to the joint portion, where the probe tip and the base portion are integrally made of same material different from the material of the joint portion.


Patent
Inotera Memories | Date: 2015-07-09

A recoverable device for memory product includes a substrate, a plurality of device dies and at least one local interconnect layer. The device dies are embedded inside the substrate. The at least one local interconnect layer is disposed on an upper surface of the substrate, and configured to route the device dies to a plurality of electrical terminals on an uppermost surface of the local interconnect layer relative to the substrate.


Patent
Inotera Memories | Date: 2015-10-30

A semiconductor device includes a redistribution layer (RDL) is disclosed. A chip is mounted on the RDL within a chip mounting area. The RDL is electrically connected to the chip. A molding compound covers and encapsulates the chip. A first stress-relief feature is embedded in the molding compound within a peripheral area adjacent to the chip mounting area. A second stress-relief feature is embedded in the molding compound within the chip mounting area. The first stress-relief feature is composed of a first material. The second stress-relief feature is composed of a second material that is different from the first material.


Patent
Inotera Memories | Date: 2015-06-04

A package structure and a method for fabricating thereof are provided. The package structure includes a substrate, a first connector, a redistribution layer, a second connector, and a chip. The first connector is disposed over the substrate. The redistribution layer is directly disposed over the first connector, and is connected to the substrate by the first connector. The redistribution layer includes a block layer, and a metal layer over the block layer. The second connector is directly disposed over the redistribution layer, and the chip is connected to the redistribution layer by the second connector.


Patent
Inotera Memories | Date: 2015-06-03

A semiconductor device includes an interposer having a first side and a second side opposite to the first side, at least one active chip mounted on the first side within a chip mounting area through a plurality of first bumps, at least one dummy chip mounted on the first side within a peripheral area being adjacent to the chip mounting area, a molding compound disposed on the first side. The molding compound covers the at least one active chip and the at least one dummy chip. A plurality of solder bumps is mounted on the second side.


Patent
Inotera Memories | Date: 2015-06-05

A connector structure and a manufacturing method thereof are provided. The connector structure includes a semiconductor substrate, a metal layer, a passivation layer, and a conductive structure. The metal layer is over the semiconductor substrate. The passivation layer is over the metal layer and includes an opening. The conductive structure is contacted with the metal layer in a patterned surface structure of the conductive structure through the opening of the passivation layer.


Patent
Inotera Memories | Date: 2015-06-04

A multi-device package includes a substrate, at least two device regions, a first redistribution layer, an external chip and a plurality of first connectors. The two device regions are formed from the substrate, and the first redistribution layer is disposed on the substrate and electrically connected to the two device regions. The external chip is disposed on the first redistribution layer, and the first connectors are interposed between the first redistribution layer and the external chip to interconnect the two.

Loading Inotera Memories collaborators
Loading Inotera Memories collaborators