Santa Barbara, CA, United States
Santa Barbara, CA, United States

Time filter

Source Type

Patent
Innovative Micro Technology | Date: 2016-08-10

An MEMS device, having two substantially parallel surfaces are separated by an initial distance. At least one of the surfaces includes a raised feature that limits the gap between the surfaces to less than the initial distance when an actuating voltage is applied. In some embodiments, the raised feature limits the gap to about 66% of the initial distance.


Patent
Innovative Micro Technology | Date: 2013-07-29

A microfabricated magnetic field transducer uses a magnetically sensitive structure in combination with one or more permeable magnetic flux guides. The flux guides may route off-axis components of an externally applied magnetic field across the sensitive axis of the magnetically sensitive structure, or may shield the magnetically sensitive structure from off-axis, stray fields or noise sources. A combination of flux guides and magnetically sensitive structures arranged on a single substrate may enable an integrated, 3-axis magnetometer in a single package, greatly improving cost and performance.


Patent
Innovative Micro Technology | Date: 2013-07-29

A MEMS-based system and a method are described for separating a target particle from the remainder of a fluid stream. The system makes use of a unique, microfabricated movable structure formed on a substrate, which moves in a rotary fashion about one or more fixed points, which are all located on one side of the axis of motion. The movable structure is actuated by a separate force-generating apparatus, which is entirely separate from the movable structure formed on its substrate. This allows the movable structure to be entirely submerged in the sample fluid.


Patent
Innovative Micro Technology | Date: 2013-09-11

A method for forming through substrate vias (TSVs) in a non-conducting, glass substrate is disclosed. The method involves patterning a silicon template substrate with a plurality of lands and spaces, bonding a slab or wafer of glass to the template substrate, and melting the glass so that it flows into the spaces formed in the template substrate. The template substrate may then be removed to leave a plurality of TSVs in the glass slab or wafer.


Systems and methods for forming an electrostatic MEMS switch include forming a movable cantilevered beam on a first substrate, forming the electrical contacts on a second substrate, and coupling the two substrates using a hermetic seal. Electrical access to the electrostatic MEMS switch may be made by forming vias through the thickness of the second substrate. The cantilevered beam may be formed by etching the perimeter shape in the device layer of an SOI substrate. An additional void may be formed in the movable beam such that it bends about an additional hinge line as a result of the additional void. This may give the beam and switch advantageous kinematic characteristics.


Patent
Innovative Micro Technology | Date: 2014-03-02

Systems and methods for forming an encapsulated device include a substantially hermetic seal which seals a device in an environment between two substrates. The substantially hermetic seal is formed by an alloy of two metal layers, one having a lower melting temperature than the other. The metal layers may be deposited two substrates, along with a raised feature formed under at least one of the metal layers. The two metals may form an alloy of a predefined stoichiometry in at least two locations on either side of the midpoint of the raised feature. The formation of the alloy may be improved by the use of an organic wetting layer adjacent to the lower melting temperature metal. Design guidelines are set forth for reducing or eliminating the leakage of molten metal into the areas adjacent to the bondlines.


Patent
Innovative Micro Technology | Date: 2014-01-19

A bonding technology is disclosed that can form an anodic, conductive bond between two optically transparent substrates. The anodic bond may be accompanied by a metal alloy, solder, eutectic and polymer bond. The first anodic bond may provide one attribute such as hermeticity, whereas the second bond may provide another attribute, such as electrical conductivity.


Patent
Innovative Micro Technology | Date: 2013-12-27

A bonding technology is disclosed that can form an anodic, conductive bond between two optically transparent substrates. The anodic bond may be accompanied by a metal alloy, solder, eutectic and polymer bond. The first anodic bond may provide one attribute such as hermeticity, whereas the second bond may provide another attribute, such as electrical conductivity.


Patent
Innovative Micro Technology | Date: 2016-04-14

A first ion rich dielectric substrate with a patterned dielectric barrier and a oxidizable metal layer is anodically bonded to a second ion rich dielectric substrate. To bond the substrates, the oxidizable metal layer is oxidized. The dielectric barrier may inhibit the migration of these ions to the bondline, which might otherwise poison the bond strength. Accordingly, when joining the two substrates, a strong bond is maintained between the wafers.


Patent
Innovative Micro Technology | Date: 2015-11-04

A microfabricated optical apparatus that includes a light source driven by a waveform, a turning mirror, and a beam shaping element, wherein the waveform is delivered to the light source by at least one through silicon via.

Loading Innovative Micro Technology collaborators
Loading Innovative Micro Technology collaborators