Time filter

Source Type

Rosemont, IL, United States

Sabbia J.A.,South Dakota State University | Kalscheur K.F.,South Dakota State University | Garcia A.D.,South Dakota State University | Gehman A.M.,Alltech Inc. | And 2 more authors.
Journal of Dairy Science | Year: 2012

The objective of this study was to examine the effects substituting soybean meal with a yeast-derived microbial protein (YMP) on rumen and blood metabolites, dry matter intake, and milk production of high-producing dairy cows. Sixteen Holstein cows (12. multiparous and 4 primiparous), 93 ± 37 DIM (mean ± SD) at the beginning of the experiment, were used in a 4 × 4 Latin square design with four 28-d periods. Cows were blocked by parity and production, with 1 square consisting of 4 animals fitted with rumen cannulas. Basal diets, formulated for 16.1% crude protein and 1.56. Mcal/kg of net energy for lactation, contained 40% corn silage, 20% alfalfa hay, and 40% concentrate mix. During each period, cows were fed 1 of 4 treatment diets corresponding to YMP (DEMP; Alltech Inc., Nicholasville, KY) concentrations of 0, 1.14, 2.28, and 3.41% DM. Soybean meal (44% CP) was replaced by YMP to attain isonitrogenous and isoenergetic diets. Dietary treatments had no effect on pH and on most ruminal volatile fatty acid concentrations, with the exception of isovalerate, which decreased linearly with the addition of YMP. Rumen ammonia concentration decreased linearly, whereas free amino acids, total amino acid nitrogen, and soluble proteins weighing more than 10. kDa showed a cubic response on rumen N fractionation. A quadratic response was observed in oligopeptides that weighed between 3 and 10. kDa and peptides under 3. kDa when expressed as percentages of total amino acids and total nitrogen. Although nonesterified fatty acid concentration in blood did not differ between treatments, β-hydroxybutyrate and plasma glucose increased linearly as YMP increased. Dry matter intake showed a cubic effect, where cows fed 1.14, and 3.41% YMP had the highest intake. Milk production was not affected by YMP, whereas a trend was observed for a quadratic increase for 4% fat-corrected milk and energy-corrected milk. Medium- and long-chain fatty acid concentrations in milk increased quadratically, which elicited similar effects on milk fat concentration and yield. Total solids percentage and yield, and milk urea nitrogen also showed quadratic effects as YMP increased in the diet. No effects were observed on feed efficiency, milk protein, and lactose percentage or yield. A complementary in vitro study demonstrated a quadratic tendency for apparent and true dry matter digestibility as YMP was added to the diet. It was concluded that the substitution of soybean meal with YMP increased the percentage of total solids in milk and tended to improve energy-corrected and fat-corrected milk production in high-producing dairy cows consuming high-forage diets. © 2012 American Dairy Science Association. Source

Hristov A.N.,Pennsylvania State University | Oh J.,Pennsylvania State University | Firkins J.L.,Ohio State University | Dijkstra J.,Wageningen University | And 9 more authors.
Journal of Animal Science | Year: 2013

The goal of this review was to analyze published data related to mitigation of enteric methane (CH4) emissions from ruminant animals to document the most effective and sustainable strategies. Increasing forage digestibility and digestible forage intake was one of the major recommended CH4 mitigation practices. Although responses vary, CH4 emissions can be reduced when corn silage replaces grass silage in the diet. Feeding legume silages could also lower CH4 emissions compared to grass silage due to their lower fiber concentration. Dietary lipids can be effective in reducing CH4 emissions, but their applicability will depend on effects on feed intake, fiber digestibility, production, and milk composition. Inclusion of concentrate feeds in the diet of ruminants will likely decrease CH4 emission intensity (Ei; CH4 per unit animal product), particularly when inclusion is above 40% of dietary dry matter and rumen function is not impaired. Supplementation of diets containing medium to poor quality forages with small amounts of concentrate feed will typically decrease CH4 Ei. Nitrates show promise as CH4 mitigation agents, but more studies are needed to fully understand their impact on whole-farm greenhouse gas emissions, animal productivity, and animal health. Through their effect on feed efficiency and rumen stoichiometry, ionophores are likely to have a moderate CH4 mitigating effect in ruminants fed high-grain or mixed grain-forage diets. Tannins may also reduce CH4 emissions although in some situations intake and milk production may be compromised. Some direct-fed microbials, such as yeast-based products, might have a moderate CH4-mitigating effect through increasing animal productivity and feed efficiency, but the effect is likely to be inconsistent. Vaccines against rumen archaea may offer mitigation opportunities in the future although the extent of CH4 reduction is likely to be small and adaptation by ruminal microbes and persistence of the effect is unknown. Overall, improving forage quality and the overall efficiency of dietary nutrient use is an effective way of decreasing CH4 Ei. Several feed supplements have a potential to reduce CH4 emission from ruminants although their long-term effect has not been well established and some are toxic or may not be economically feasible. © 2013 American Society of Animal Science. All rights reserved. Source

Knapp J.R.,Fox Hollow Consulting LLC | Laur G.L.,Gwinn Sawyer Veterinary Clinic | Vadas P.A.,U.S. Department of Agriculture | Weiss W.P.,Ohio State University | Tricarico J.M.,Innovation Center For Us Dairy
Journal of Dairy Science | Year: 2014

Many opportunities exist to reduce enteric methane (CH4) and other greenhouse gas (GHG) emissions per unit of product from ruminant livestock. Research over the past century in genetics, animal health, microbiology, nutrition, and physiology has led to improvements in dairy production where intensively managed farms have GHG emissions as low as 1kg of CO2 equivalents (CO2e)/kg of energy-corrected milk (ECM), compared with >7kg of CO2e/kg of ECM in extensive systems. The objectives of this review are to evaluate options that have been demonstrated to mitigate enteric CH4 emissions per unit of ECM (CH4/ECM) from dairy cattle on a quantitative basis and in a sustained manner and to integrate approaches in genetics, feeding and nutrition, physiology, and health to emphasize why herd productivity, not individual animal productivity, is important to environmental sustainability. A nutrition model based on carbohydrate digestion was used to evaluate the effect of feeding and nutrition strategies on CH4/ECM, and a meta-analysis was conducted to quantify the effects of lipid supplementation on CH4/ECM. A second model combining herd structure dynamics and production level was used to estimate the effect of genetic and management strategies that increase milk yield and reduce culling on CH4/ECM. Some of these approaches discussed require further research, but many could be implemented now. Past efforts in CH4 mitigation have largely focused on identifying and evaluating CH4 mitigation approaches based on nutrition, feeding, and modifications of rumen function. Nutrition and feeding approaches may be able to reduce CH4/ECM by 2.5 to 15%, whereas rumen modifiers have had very little success in terms of sustained CH4 reductions without compromising milk production. More significant reductions of 15 to 30% CH4/ECM can be achieved by combinations of genetic and management approaches, including improvements in heat abatement, disease and fertility management, performance-enhancing technologies, and facility design to increase feed efficiency and life-time productivity of individual animals and herds. Many of the approaches discussed are only partially additive, and all approaches to reducing enteric CH4 emissions should consider the economic impacts on farm profitability and the relationships between enteric CH4 and other GHG. © 2014 American Dairy Science Association. Source

Hristov A.N.,Pennsylvania State University | Ott T.,Pennsylvania State University | Tricarico J.,Innovation Center For Us Dairy | Rotz A.,Pennsylvania State University | And 11 more authors.
Journal of Animal Science | Year: 2013

The goal of this review was to analyze published data on animal management practices that mitigate enteric methane (CH4) and nitrous oxide (N2O) emissions from animal operations. Increasing animal productivity can be a very effective strategy for reducing greenhouse gas (GHG) emissions per unit of livestock product. Improving the genetic potential of animals through planned cross-breeding or selection within breeds and achieving this genetic potential through proper nutrition and improvements in reproductive efficiency, animal health, and reproductive lifespan are effective approaches for improving animal productivity and reducing GHG emission intensity. In subsistence production systems, reduction of herd size would increase feed availability and productivity of individual animals and the total herd, thus lowering CH4 emission intensity. In these systems, improving the nutritive value of low-quality feeds for ruminant diets can have a considerable benefit on herd productivity while keeping the herd CH4 output constant or even decreasing it. Residual feed intake may be a tool for screening animals that are low CH4 emitters, but there is currently insufficient evidence that low residual feed intake animals have a lower CH4 yield per unit of feed intake or animal product. Reducing age at slaughter of finished cattle and the number of days that animals are on feed in the feedlot can significantly reduce GHG emissions in beef and other meat animal production systems. Improved animal health and reduced mortality and morbidity are expected to increase herd productivity and reduce GHG emission intensity in all livestock production systems. Pursuing a suite of intensive and extensive reproductive management technologies provides a significant opportunity to reduce GHG emissions. Recommended approaches will differ by region and species but should target increasing conception rates in dairy, beef, and buffalo, increasing fecundity in swine and small ruminants, and reducing embryo wastage in all species. Interactions among individual components of livestock production systems are complex but must be considered when recommending GHG mitigation practices. © 2013 American Society of Animal Science. All rights reserved. Source

Holder V.B.,University of Kentucky | Tricarico J.M.,Innovation Center For Us Dairy | Kim D.H.,South Korean National Institute of Animal Science | Kristensen N.B.,Knowledge Center for Agriculture | Harmon D.L.,University of Kentucky
Animal Feed Science and Technology | Year: 2015

The objective of this study was to compare nitrogen metabolism and urea kinetics between diets containing either rapidly degrading or slow degrading non-protein nitrogen (NPN) at varying levels of degradable intake protein (DIP). Treatments were slow release urea (Optigen®, Alltech, Inc.) fed at 1.01 and 1.14 and feed grade urea (UREA) fed at 0.89 and 1.00 of calculated DIP requirements. Eight Holstein steers (209 ±15kg) implanted with 28mg estradiol+200mg trenbolone acetate (Synovex Plus, Fort Dodge Animal Health, Fort Dodge, IA) were used in a replicated 4×4 Latin square. Experimental periods were 27 days, with 19 day adaptation followed by 7 day of urine and fecal collection and 1 day of blood sampling. Continuous (78h) intravenous infusion of 15N15N-urea allowed the estimation of systemic urea kinetics. Dry matter intake was not different between treatments (7.2kg/day). Increasing DIP had a tendency to increase dry matter digestibility (DMD) for both Urea and Optigen®. Urea had higher DMD than Optigen®. Increasing DIP increased urinary N output for both UREA and Optigen®, and increased N-retention at 1.14 Optigen®. Increasing DIP increased urea-N entry rate (UER) and urinary urea-N excretion (UUE) for both Optigen® and UREA. Gastrointestinal entry of urea-N, urea-N lost to feces and urea-N apparently used for anabolism were not different between treatments. Plasma urea concentration was greater in higher DIP diets and higher for Urea than Optigen® at 1.00 DIP. Therefore increasing DIP level will increase N-excretion related to higher urea production and excretion in urine but may also increase diet digestibility. Most changes in N metabolism were driven by N intake. © 2014 Elsevier B.V. Source

Discover hidden collaborations