Entity

Time filter

Source Type

New Orleans, LA, United States

Grant
Agency: National Science Foundation | Branch: | Program: SBIR | Phase: Phase I | Award Amount: 150.00K | Year: 2011

This Small Business Innovation Research (SBIR) Phase I project proposes to develop a next generation forensic human DNA typing system. DNA profiling has gained broad popularity since its first use 25 years ago. Its application has expanded from criminal and parentage issues to mass disasters and battlefield forensics. In addition, the desire to rapidly analyze degraded and minimal samples has also increased exponentially. While DNA analysis of Short Tandem Repeats (STR) is considered routine, scientists continue to explore ways to identify smaller segments of DNA for identification purposes. Mitochondrial sequencing is presently the test of last resort but lacks the discrimination power of nuclear STR typing. As DNA profiling has increased, so has the need for quicker, more robust and less costly tests. This project proposes the use of a microfluidic platform with redesigned primers for the Alu family of Mobile Interspersed Genetic Elements. Alu primer sets producing amplicons in the 100-200 bp range will be typed for Alu insertion polymorphism. Due to the large number of Alus available in the human genome and their known ancestral state, these genetic elements can be a valuable tool for typing degraded DNA samples and in their ability to infer geographic origin. The broader impact and commercial potential of this project is to provide a complete, robust, next generation DNA typing system for human identification. Successful development of a rapid Alu-based DNA typing system would provide the human identity testing market with additional and potentially transformational tools to identify biological samples containing degraded DNA as well as provide clues to the geographic ancestry of a specimen. Supplemental and next generation DNA typing systems will result in the production of more genetic information that can aid society in its search for the truth and justice for victims of violent crimes. Mass disasters, battlefield forensics, as well as routine DNA analysis for crime scene and parentage testing will benefit from a next generation rapid DNA identification system. For forensic applications, a microfluidic platform in conjunction with an Alu-based DNA typing system will address the commercial needs of this industry and at minimum could provide additional information to existing testing methods. Based upon the current human DNA identification testing market the commercial potential of a supplemental Alu-based DNA typing system is in excess of 100 million dollars, thus making a significant commercial impact and positive contribution to the field of human DNA profiling.


Trademark
InnoGenomics | Date: 2013-08-15

Pharmaceutical and Veterinary Preparations, Substances, Reagents, Media and Agents Adapted For Medical, Forensic, Human Identity, Research, Genetic Testing and Identification Uses, namely Degraded-DNA Assessment and Quantification Kits, DNA Assessment and Quantification Kits, Kits for Testing DNA And Degraded DNA in Biological Samples For Forensic, Human Identify, Research, Genetic Testing and Identification Uses, and Diagnostic Substances Preparations, Reagents, Media and Agents for Medical Uses, And Instructions For Using the Substances, Reagents, Preparations, Media, and Agents To Perform the Testing, in International Class 005.


Trademark
InnoGenomics | Date: 2013-08-15

Pharmaceutical and veterinary preparations, and substances and agents adapted for Medical, Forensic, Human Identity, Research, Genetic Testing and Identification Uses, namely DNA Testing Kits, Kits for Testing DNA in Biological Samples For Forensic, Human Identity, Research, Genetic Testing and Identification Uses, and Diagnostic Substances for Medical, Human Identity, Research, Genetic Testing and Identification Uses, And Instructions For Using the Substances, Reagents, Preparations, Media, and Agents To Perform the Testing, in International Class 005.


InnoGenomics | Entity website

The latest training guidelines approved by SWGDAM (Scientific Working Group on DNA Analysis Methods) specifically state in section 5.2 ...


By utilizing a Mini-Primer strategy targeting the target site duplication (TSD) sequence of retrotransposons, insertion and null allele (INNUL) markers, which include short interspersed nuclear elements (SINEs), long interspersed nuclear elements (LINEs), and composite SVA retrotransposons (SINE/VNTR/Alu, where VNTR represents variable number of tandem repeats and Alu represents a type of primate specific SINE that has reached a copy number in excess of one million in the human genome), can be effectively used as markers for human identification and bio-ancestry studies regardless of the size of the inserted element. The size of the amplicons for INNULs and the difference between allelic states can be reduced substantially such that these markers have utility for analyzing high and low quality human DNA samples. Multiplexes including either 15 or 20 retrotransposable element (RE) markers plus Amelogenin for single tube amplification of DNA in four color detection were successfully designed. The multiplexes provided power of discrimination suitable for forensic and paternity analyses.

Discover hidden collaborations