Time filter

Source Type

Hohhot, China

Inner Mongolia University of Technology is a university in Inner Mongolia, People's Republic of China, under the authority of the Autonomous Region government. It was founded in 1951 and was originally known as the Suiyuan Higher Technical School and then after 1958 the Inner Mongolia Polytechnic Institute before changing to its current name in 1993. It is located in north part of Hohhot, the capital city of Inner Mongolia Autonomous Region.The university has over 16,000 students enrolled. The university is primarily an Engineering school, although it has expanded to other fields including Economics and Law. There are 19 disciplines in which students can acquire a Master's Degree and 36 disciplines for undergraduate study. Wikipedia.

Luo L.,Inner Mongolia University of Technology
Science China: Physics, Mechanics and Astronomy | Year: 2014

The conformational change of biological macromolecule is investigated from the point of quantum transition. A quantum theory on protein folding is proposed. Compared with other dynamical variables such as mobile electrons, chemical bonds and stretching-bending vibrations the molecular torsion has the lowest energy and can be looked as the slow variable of the system. Simultaneously, from the multi-minima property of torsion potential the local conformational states are well defined. Following the idea that the slow variables slave the fast ones and using the nonadiabaticity operator method we deduce the Hamiltonian describing conformational change. It is shown that the influence of fast variables on the macromolecule can fully be taken into account through a phase transformation of slow variable wave function. Starting from the conformation-transition Hamiltonian the nonradiative matrix element was calculated and a general formulas for protein folding rate was deduced. The analytical form of the formula was utilized to study the temperature dependence of protein folding rate and the curious non-Arrhenius temperature relation was interpreted. By using temperature dependence data the multi-torsion correlation was studied. The decoherence time of quantum torsion state is estimated. The proposed folding rate formula gives a unifying approach for the study of a large class problems of biological conformational change. © 2014 Science China Press and Springer-Verlag Berlin Heidelberg. Source

Luo L.F.,Inner Mongolia University of Technology
Science China Life Sciences | Year: 2012

The rates of protein folding with photon absorption or emission and the cross section of photon -protein inelastic scattering are calculated from quantum folding theory by use of a field-theoretical method. All protein photo-folding processes are compared with common protein folding without the interaction of photons (non-radiative folding). It is demonstrated that there exists a common factor (thermo-averaged overlap integral of the vibration wave function, TAOI) for protein folding and protein photo-folding. Based on this finding it is predicted that (i) the stimulated photo-folding rates and the photon-protein resonance Raman scattering sections show the same temperature dependence as protein folding; (ii) the spectral line of the electronic transition is broadened to a band that includes an abundant vibration spectrum without and with conformational transitions, and the width of each vibration spectral line is largely reduced. The particular form of the folding rate-temperature relation and the abundant spectral structure imply the existence of quantum tunneling between protein conformations in folding and photo-folding that demonstrates the quantum nature of the motion of the conformational-electronic system. © 2012 The Author(s). Source

Luo L.,Inner Mongolia University of Technology
Frontiers of Physics in China | Year: 2011

Assuming that the main variables in the life processes at the molecular level are the conformation of biological macromolecules and their frontier electrons a formalism of quantum theory on conformation-electron system is proposed. Based on the quantum theory of conformation-electron system, the protein folding is regarded as a quantum transition between torsion states on polypeptide chain, and the folding rate is calculated by nonadiabatic operator method. The rate calculation is generalized to the case of frequency variation in folding. An analytical form of protein folding rate formula is obtained, which can be served as a useful tool for further studying protein folding. The application of the rate theory to explain the protein folding experiments is briefly summarized. It includes the inertial moment dependence of folding rate, the unified description of two-state and multistate protein folding, the relationship of folding and unfolding rates versus denaturant concentration, the distinction between exergonic and endergonic foldings, the ultrafast and the downhill folding viewed from quantum folding theory, and, finally, the temperature dependence of folding rate and the interpretation of its non-Arrhenius behaviors. All these studies support the view that the protein folding is essentially a quantum transition between conformational states. © 2011 Higher Education Press and Springer-Verlag Berlin Heidelberg. Source

Lu J.,Inner Mongolia University of Technology
PLoS ONE | Year: 2013

In sample surveys, it is usual to make use of auxiliary information to increase the precision of the estimators. We propose a new chain ratio estimator and regression estimator of a finite population mean using linear combination of two auxiliary variables and obtain the mean squared error (MSE) equations for the proposed estimators. We find theoretical conditions that make proposed estimators more efficient than the traditional multivariate ratio estimator and the regression estimator using information of two auxiliary variables. © 2013 Jingli Lu. Source

Fan G.-L.,Inner Mongolia University of Technology | Li Q.-Z.,Inner Mongolia University of Technology
Journal of Theoretical Biology | Year: 2013

Bioluminescent proteins are highly sensitive optical reporters for imaging in live animals; they have been extensively used in analytical applications in intracellular monitoring, genetic regulation and detection, and immune and binding assays. In this work, we systematically analyzed the sequence and structure information of 199 bioluminescent and nonbioluminescent proteins, respectively. Based on the results, we presented a novel method called auto covariance of averaged chemical shift (acACS) for extracting structure features from a sequence. A classifier of support vector machine (SVM) fusing increment of diversity (ID) was used to distinguish bioluminescent proteins from nonbioluminescent proteins by combining dipeptide composition, reduced amino acid composition, evolutionary information, and acACS. The overall prediction accuracy evaluated by jackknife validation reached 82.16%. This result was better than that obtained by other existing methods. Improvement of the overall prediction accuracy reached up to 5.33% higher than those of the SVM and auto covariance of sequential evolution information by 10-fold cross-validation. The acACS algorithm also outperformed other feature extraction methods, indicating that our approach is better than other existing methods in the literature. © 2013 Elsevier Ltd. Source

Discover hidden collaborations