Time filter

Source Type


Reggiani P.C.,INIBIOLP | Reggiani P.C.,University of la Plata | Schwerdt J.I.,INIBIOLP | Schwerdt J.I.,University of la Plata | And 5 more authors.
Current Pharmaceutical Design | Year: 2014

Thymulin is a thymic hormone exclusively produced by the epithelial cells of the thymus. After its discovery and initial characterization in the '70s, it was demonstrated that the production and secretion of thymulin are strongly influenced by the neuro-endocrine system. Conversely, a growing body of evidence, to be reviewed here, suggests that thymulin is a hypophysiotropic peptide. Additionally, a substantial body of information pointing to thymulin and a synthetic analog as anti-inflammatory and analgesic peptides in the central nervous system brain and other organs will be also reviewed. In recent years, a synthetic DNA sequence encoding a biologically active analog of thymulin, metFTS, was constructed and cloned in a number of adenovectors. These include bidirectional regulatable Tet-Off vector systems that simultaneously express metFTS and green fluorescent protein and that can be down-regulated reversibly by the addition of the antibiotic doxycycline. A number of recent studies indicate that gene therapy for thymulin may be an effective therapeutic strategy to prevent some of the hormonal and reproductive abnormalities that typically appear in congenitally athymic (nude) mice, used as a suitable model of neuroendocrine and reproductive aging. Summing up, this article briefly reviews the publications on the physiology of the thymulin-neuroendocrine axis and the anti-inflammatory properties of the molecule and its analog. The availability of novel biotechnological tools should boost basic studies on the molecular biology of thymulin and should also allow an assessment of the potential of gene therapy to restore circulating thymulin levels in thymodeficient animal models and eventually, in humans. © 2014 Bentham Science Publishers. Source

Layerenza J.P.,INIBIOLP | Gonzalez P.,National University of La Plata | Garcia De Bravo M.M.,INIBIOLP | Polo M.P.,INIBIOLP | And 3 more authors.
Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids | Year: 2013

We investigated nuclear neutral-lipid (NL) composition and organization, as NL may represent an alternative source for providing fatty acids and cholesterol (C) to membranes, signaling paths, and transcription factors in the nucleus. We show here that nuclear NL were organized into nonpolar domains in the form of nuclear-lipid droplets (nLD). By fluorescent confocal microscopy, representative nLD were observed in situ within the nuclei of rat hepatocytes in vivo and HepG2 cells, maintained under standard conditions in culture, and within nuclei isolated from rat liver. nLD were resistant to Triton X-100 and became stained with Sudan Red, OsO4, and BODIPY493/503. nLD and control cytosolic-lipid droplets (cLD) were isolated from rat-liver nuclei and from homogenates, respectively, by sucrose-gradient sedimentation. Lipids were extracted, separated by thin-layer chromatography, and quantified. nLD were composed of 37% lipids and 63% proteins. The nLD lipid composition was as follows: 19% triacylglycerols (TAG), 39% cholesteryl esters, 27% C, and 15% polar lipids; whereas the cLD composition contained different proportions of these same lipid classes, in particular 91% TAG. The TAG fatty acids from both lipid droplets were enriched in oleic, linoleic, and palmitic acids. The TAG from the nLD corresponded to a small pool, whereas the TAG from the cLD constituted the main cellular pool (at about 100% yield from the total homogenate). In conclusion, nLD are a domain within the nucleus where NL are stored and organized and may be involved in nuclear lipid homeostasis. © 2012 Elsevier B.V. All rights reserved. Source

Discover hidden collaborations