Time filter

Source Type

Tyrer P.C.,Inflammatory Bowel Disease Research Group | Tyrer P.C.,University of Canberra | Bean E.G.,Inflammatory Bowel Disease Research Group | Ruth Foxwell A.,University of Canberra | And 2 more authors.
Biochemical and Biophysical Research Communications | Year: 2011

We describe a coculture model of a human intestinal epithelial cell line and human peripheral blood monocytes in which monocytes differentiate into cells with features of resident intestinal macrophages. Caco-2 cells are grown on the lower surface of a semipermeable filter with pore size of 3μm (Transwells®) until they differentiate into enterocytes. Peripheral-blood monocytes are added and the co-culture incubated for two days. Monocytes migrate through the pores of the membrane, come into direct contact with the basolateral surfaces of the epithelial cell monolayer, and develop characteristics of resident intestinal macrophages including downregulation of CD14 expression and reduced pro-inflammatory cytokine responses (IL-8, TNF and IL-1β) to bacterial products. The apical application of lipopolysaccharide (LPS) and muramyl dipeptide (MDP) resulted in an increased number of integrated monocytes, but abrogated the downregulation of CD14 expression and the diminished cytokine responses. MDP also reduced tight-junctional integrity, whilst LPS had no effect. These data indicate that LPS and MDP have significant pathophysiological effects on enterocyte-monocyte interactions, and confirm other studies that demonstrate that enterocytes and their products influence monocyte differentiation. This model may be useful in providing insights into the interaction between monocytes, epithelial cells and intestinal bacteria in health and disease. © 2011. Source

Liu J.Z.,Wellcome Trust Sanger Institute | Van Sommeren S.,University of Groningen | Huang H.,Harvard University | Ng S.C.,Chinese University of Hong Kong | And 37 more authors.
Nature Genetics | Year: 2015

Ulcerative colitis and Crohn's disease are the two main forms of inflammatory bowel disease (IBD). Here we report the first trans-ancestry association study of IBD, with genome-wide or Immunochip genotype data from an extended cohort of 86,640 European individuals and Immunochip data from 9,846 individuals of East Asian, Indian or Iranian descent. We implicate 38 loci in IBD risk for the first time. For the majority of the IBD risk loci, the direction and magnitude of effect are consistent in European and non-European cohorts. Nevertheless, we observe genetic heterogeneity between divergent populations at several established risk loci driven by differences in allele frequency (NOD2) or effect size (TNFSF15 and ATG16L1) or a combination of these factors (IL23R and IRGM). Our results provide biological insights into the pathogenesis of IBD and demonstrate the usefulness of trans-ancestry association studies for mapping loci associated with complex diseases and understanding genetic architecture across diverse populations. © 2015 Nature America, Inc. All rights reserved. Source

Moret-Tatay I.,Inflammatory Bowel Disease Research Group | Moret-Tatay I.,CIBER ISCIII | Iborra M.,Inflammatory Bowel Disease Research Group | Iborra M.,CIBER ISCIII | And 11 more authors.
Oxidative Medicine and Cellular Longevity | Year: 2016

Crohn's disease (CD) is an inflammatory disorder characterised by a transmural inflammation of the intestinal wall. Although the physiopathology of the disease is not yet fully understood, it is clear that the immune response plays an important role in it. This hyperreactive immune system is accompanied by the presence of unregulated reactive oxygen species (ROS). These elements are modulated in normal conditions by different elements, including enzymes that function as antioxidant defences preventing the harmful effects of ROS. However, in CD there is an imbalance between ROS production and these antioxidant elements, resulting in oxidative stress (OxS) phenomena. In fact, now OxS is being considered more a potential etiological factor for Crohn's disease rather than a concomitant effect in the disease. The persistence of the OxS can also be influencing the evolution of the disease. Furthermore, the epigenetic mechanisms, above all microRNAs, are being considered key elements in the pathogenesis of CD. These elements and the presence of OxS have also been linked to several diseases. We, therefore, describe in this review the most significant findings related to oxidative stress and microRNAs profiles in the peripheral blood of CD patients. © 2016 Inés Moret-Tatay et al. Source

Discover hidden collaborations