Sunnyvale, CA, United States

Infinera Corporation

www.infinera.com
Sunnyvale, CA, United States
SEARCH FILTERS
Time filter
Source Type

Systems and methods for a multi-layer network to achieve network resource isolation among clients using the same server network, such as a VPN in a multi-layered network and interaction within the node, may include interaction between a server layer (e.g. L0 Photonic network) and the client layer (e.g. L1 network) that help the client layer (L1) gather information about the server-layer (L0) connection affinities. For example, the use of server layer (L0) connection affinities to construct Virtual Network Topologies (VNT) and/or network abstractions for customer traffic isolations in client layer (L1), the use of VNT to offer physical and/or logical network resource isolation for L1 customers, and provide L1 VPN services in a multi-layer environment.


Patent
Infinera Corporation | Date: 2016-09-26

Consistent with the present disclosure, a compact laser with extended tunability (CLET) is provided that includes multiple segments or sections, at least one of which is curved, bent or non-collinear with other segments, so that the CLET has a compact form factor either as a singular laser or when integrated with other devices. The term CLET, as used herein, refers to any of the laser configurations disclosed herein having mirrors and a bent, angled or curved part, portion or section between such mirrors. If bent, the bent portion is preferably oriented at an angle of at least 30 degrees relative to other portions of the CLET. Alternatively, the curve or bend portion may be distributed over different sections of the CLET over a series of arcs, for example. The waveguide extending between the mirrors is continuous, such that light propagating along the waveguide is not divided or split. The waveguide also constitutes a continuous waveguide path.


Patent
Infinera Corporation | Date: 2016-04-28

Consistent with the present disclosure, a compact laser with extended tunability (CLET) is provided that includes multiple segments or sections, at least one of which is curved, bent or non-collinear with other segments, so that the CLET has a compact form factor either as a singular laser or when integrated with other devices. The term CLET, as used herein, refers to any of the laser configurations disclosed herein having mirrors and a bent, angled or curved part, portion or section between such mirrors. If bent, the bent portion is preferably oriented at an angle of at least 30 degrees relative to other portions of the CLET. Alternatively, the curve or bend portion may be distributed over different sections of the CLET over a series of arcs, for example. The waveguide extending between the mirrors is continuous, such that light propagating along the waveguide is not divided or split. The waveguide also constitutes a continuous waveguide path.


Patent
Infinera Corporation | Date: 2016-06-24

A photonic integrated circuit is provided that may include a substrate; one or more optical sources, on the substrate, to output light associated with a corresponding one or more optical signals; one or more waveguides connected to the one or more optical sources; a multiplexer connected to the one or more waveguides; and one or more light absorptive structures, located on the substrate adjacent to one of the one or more optical sources, one of the one or more waveguides, and/or the multiplexer, to absorb a portion of the light associated with at least one of the corresponding one or more optical signals.


Patent
Infinera Corporation | Date: 2015-09-30

A method to dynamically resize an LSP without releasing it includes: establishing a first path through a network from a first device to a second device; receiving a request to resize the first path; establishing a second path identical to the first path; simultaneously transmitting communication signals on the first path and the second path; and switching all communication signals from the first path to the second path.


Patent
Infinera Corporation | Date: 2015-09-30

This disclosure relates to optical line system equipment, which enables wavelength addition for long haul transmission. The system is configured to prevent contention of wavelengths added into a multiplexer. For example, an optical wavelength combiner, such as a multiplexer, may include components that are configured to detect potential collisions between existing wavelengths and a newly added wavelength, and block the addition of the conflicting wavelength while alerting the operator.


Patent
Infinera Corporation | Date: 2015-10-09

A device may receive optical network information associated with a first optical node and a second optical node. The first optical node may be associated with a first group of optical devices. The second optical node may be associated with a second group of optical devices. The device may identify a first mapping in which a first group of optical channels is associated with the first group of optical devices and a second mapping in which a second group of optical channels is associated with the second group of optical devices. The first group of optical channels may correspond to the first group of payloads, and the second group of optical channels may correspond to the second group of payloads. The device may provide information depicting the first mapping and information depicting the second mapping.


A device may receive optical network information associated with an optical network, and may determine a user associated with network resources of the optical network. The network resources may be shared for use by multiple users, including the user. The device may store the optical network information and information that identifies a relationship between the user and the network resources. The device may receive a request for at least a portion of the optical network information associated with the user and the network resources. The device may identify the network resources, associated with the user, based on storing the optical network information and the information that identifies the relationship The device may provide the at least the portion of the optical network information, including information associated with the network resources associated with the user, based on identifying the network resources.


Consistent with the present disclosure, a compact laser with extended tunability (CLET) is provided that includes multiple segments or sections, at least one of which is curved, bent or non-collinear with other segments, so that the CLET has a compact form factor either as a singular laser or when integrated with other devices. The term CLET, as used herein, refers to any of the laser configurations disclosed herein having mirrors and a bent, angled or curved part, portion or section between such mirrors. If bent, the bent portion is preferably oriented at an angle of at least 30 degrees relative to other portions of the CLET. Alternatively, the curve or bend portion may be distributed over different sections of the CLET over a series of arcs, for example. The waveguide extending between the mirrors is continuous, such that light propagating along the waveguide is not divided or split. The waveguide also constitutes a continuous waveguide path.


Consistent with the present disclosure, a compact laser with extended tunability (CLET) is provided that includes multiple segments or sections, at least one of which is curved, bent or non-collinear with other segments, so that the CLET has a compact form factor either as a singular laser or when integrated with other devices. The term CLET, as used herein, refers to any of the laser configurations disclosed herein having mirrors and a bent, angled or curved part, portion or section between such mirrors. If bent, the bent portion is preferably oriented at an angle of at least 30 degrees relative to other portions of the CLET. Alternatively, the curve or bend portion may be distributed over different sections of the CLET over a series of arcs, for example. The waveguide extending between the mirrors is continuous, such that light propagating along the waveguide is not divided or split. The waveguide also constitutes a continuous waveguide path.

Loading Infinera Corporation collaborators
Loading Infinera Corporation collaborators