Neubiberg, Germany

Infineon Technologies

www.infineon.com
Neubiberg, Germany

Infineon Technologies AG is a German semiconductor manufacturer founded on 1 April 1999, when the semiconductor operations of the parent company Siemens AG were spun off to form a separate legal entity. As of 30 September 2013, Infineon has 26,725 employees worldwide. In fiscal year 2013, the company achieved sales of €3.843 billion.On 1 May 2006, Infineon's Memory Products division was carved out as a distinct company called Qimonda AG, which at its height employed about 13,500 people worldwide. Qimonda was listed on the New York Stock Exchange until 2009. Wikipedia.

SEARCH FILTERS
Time filter
Source Type

Patent
Infineon Technologies | Date: 2016-11-28

A magnetic field current sensor including a die having at least one magnetic field sensing element; a plurality of contacts disposed in a first plane and coupled to the die; a conductor comprising first and second contact portions, the first and second contacts electrically coupled and disposed in a second plane different from the first plane, and the conductor coupled to and electrically isolated from the die; and a mold body enclosing the die, the plurality of contacts, and the first and second contact portions.


A multiplicity of power semiconductor switching elements of the same type parallel have a load current terminal for a load current input and a load current terminal for a load current output. At least one outer load current terminal and at least one inner load current terminal per load current direction include a load current input and a load current output. At least one contacting device for common electrical contacting all of the load current terminals of the same load current direction includes a load current input and a load current output. The contacting device includes a plurality of terminal tongues which are respectively fastened on an associated load current terminal. The geometry and/or profile of the terminal tongue of an outer load current terminal differs from the geometry and/or profile of the terminal tongue of an inner load current terminal of the same contacting device,


Patent
Infineon Technologies | Date: 2016-11-15

A semiconductor device includes a first transistor and a second transistor in a semiconductor substrate. The first transistor includes a first drain contact electrically connected to a first drain region, the first drain contact including a first drain contact portion and a second drain contact portion. The first drain contact portion includes a drain conductive material in direct contact with the first drain region. The second transistor includes a second source contact electrically connected to a second source region. The second source contact includes a first source contact portion and a second source contact portion. The first source contact portion includes a source conductive material in direct contact with the second source region.


There are disclosed herein various implementations of a semiconductor structure and method. The semiconductor structure comprises a substrate, a transition body over the substrate, and a group III-V intermediate body having a bottom surface over the transition body. The semiconductor structure also includes a group III-V device layer over a top surface of the group III-V intermediate body. The group III-V intermediate body has a continuously reduced impurity concentration wherein a higher impurity concentration at the bottom surface is continuously reduced to a lower impurity concentration at the top surface.


Patent
Infineon Technologies | Date: 2017-01-27

A semiconductor device includes a semiconductor body having opposite first and second surfaces, a drift or base zone in the semiconductor body and an oxygen diffusion barrier in the semiconductor body. The drift or base zone is located between the first surface and the oxygen diffusion barrier and directly adjoins the oxygen diffusion barrier. The semiconductor device further includes first and second load terminal contacts. At least one of the first and the second load terminal contacts is electrically connected to the semiconductor body through the first surface.


Patent
Infineon Technologies | Date: 2017-01-31

In accordance with an embodiment, a receiver includes a receiving unit configured to receive a first received bus signal and a second received bus signal based on a bus input signal. The receiver also includes a first state machine configured to determine that a first output signal is a first symbol in response to the first received bus signal transitioning from a first bus state to a second bus state and staying in the second bus state for less than a first predetermined period of time, and a second symbol in response to the first received bus signal transitioning from the first bus state to the second bus state and staying in the second bus state for at least the first predetermined period of time. Additionally, the receiver includes a second state machine.


Patent
Infineon Technologies | Date: 2016-11-10

A method of forming a semiconductor device includes irradiating a semiconductor body with particles. Dopant ions are implanted into the semiconductor body such that the dopant ions are configured to be activated as donors or acceptors. Thereafter, the semiconductor body is processed thermally.


Patent
Infineon Technologies | Date: 2017-01-31

A cooling apparatus is manufactured by: receiving a discrete module by a first singular part, the discrete module including a semiconductor die encapsulated by a mold compound, a plurality of leads electrically connected to the semiconductor die and protruding out of the mold compound, and a first cooling plate at least partly uncovered by the mold compound; attaching a second singular part to a periphery of the first part to form a housing, the housing surrounding a periphery of the discrete module, the second part having a cutout which exposes the first cooling plate and a sealing structure facing a side of the discrete module with the first cooling plate; and filling the sealing structure with a sealing material which forms a water-tight seal around the periphery of the discrete module at the side of the discrete module with the first cooling plate.


Patent
Infineon Technologies | Date: 2017-02-01

According to various embodiments, a carrier may be provided, the carrier including: a hollow chamber spaced apart from a surface of the carrier; a trench structure extending from the surface of the carrier to the hollow chamber and laterally surrounding a first region of the carrier, the trench structure including one or more trenches extending from the surface of the carrier to the hollow chamber, and one or more support structures intersecting the one or more trenches and connecting the first region of the carrier with a second region of the carrier outside the trench structure, wherein the one or more support structures including an electrically insulating material.


An XMR angle sensor arrangement with a safety mechanism comprises an XMR angle sensor having a sensing area for sensing an in-plane magnetic field and for outputting a sensor signal based on the in-plane magnetic field component sensed in the sensing area; a permanent magnet, which is rotatably arranged with respect to the XMR angle sensor to generate a first in-plane magnetic field component in the sensing area of the XMR angle sensor; an excitation current rail path, which is arranged proximate to the sensing area of the XMR angle sensor; and an excitation current provider configured to provide the excitation current rail path with an excitation signal having a excitation signal strength, wherein the excitation signal strength of the excitation signal is chosen to generate a second in-plane magnetic field component in the sensing area of the XMR angle sensor which results, due to a super position of the first and second in-plane magnetic field components, in an expected change of the direction of the resulting in-plane magnetic field component, wherein the XMR angle sensor arrangement is correctly functioning when the sensed change of direction of the resulting in-plane magnetic field component due to the excitation signal corresponds to the expected change of direction of the resulting in-plane magnetic field component.

Loading Infineon Technologies collaborators
Loading Infineon Technologies collaborators