Time filter

Source Type

Talisuna A.,Infectious Diseases Research Collaboration | Adibaku S.,Ministry of Health | Dorsey G.,San Francisco General Hospital | Kamya M.R.,Makerere University | Rosenthal P.J.,San Francisco General Hospital
Acta Tropica | Year: 2012

In the recent past there have been several reports of successes in malaria control, leading some public health experts to conclude that Africa is witnessing an epidemiological transition, from an era of failed malaria control to progression from successful control to elimination. Successes in control have been attributed to increased international donor support leading to increased intervention coverage. However, these changes are not uniform across Africa. In Uganda, where baseline transmission is very high and intervention coverage not yet to scale, the malaria burden is not declining and has even likely increased in the last decade. In this article we present perspectives for the future for Uganda and other malaria endemic countries with high baseline transmission intensity and significant health system challenges. For these high burden areas, malaria elimination is currently not feasible, and early elimination programs are inappropriate, as they would further fragment already fragmented and inefficient malaria control systems. Rather, health impacts will be maximized by aiming to achieve universal coverage of proven interventions in the context of a strengthened health system. © 2011 Elsevier B.V. Source

Ochong E.,University of California at San Francisco | Tumwebaze P.K.,Infectious Diseases Research Collaboration | Byaruhanga O.,Infectious Diseases Research Collaboration | Greenhouse B.,University of California at San Francisco | Rosenthal P.J.,University of California at San Francisco
Antimicrobial Agents and Chemotherapy | Year: 2013

Polymorphisms in the Plasmodium falciparum multidrug resistance 1 (pfmdr1) gene impact sensitivity to multiple antimalarials. In Africa, polymorphisms at N86Y and D1246Y are common and have various impacts on sensitivity to different drugs. To gain insight into the fitness consequences of these polymorphisms, we cultured parasites isolated from children with malaria in Tororo, Uganda, where the multiplicity of infection is high, and used pyrosequencing to follow polymorphism prevalences in culture over time. Of 71 cultures, parasites in 69 were successfully analyzed at N86Y and parasites in 68 were successfully analyzed at D1246Y over 3 to 36 days of culture. For position 86, the sequences of 39/69 (56.5%) parasites remained stable (>90% prevalence over 2 to 17 time points), with 82.1% of these being stable for the 86Y mutation. For position 1246, the sequences of 31/68 (45.6%) parasites remained stable, with 64.5% of these being stable for the wild-type D1246 sequence (P-0.0002 for comparison of stable mutant genotypes for the two alleles). Defining allele selection as a>15% change in prevalence between the first and last samples assessed, for position 86, 11 samples showed selection, with selection toward 86Y occurring in 72.7% of alleles; for position 1246, 14 samples showed selection, with selection toward D1246 occurring in 64.3% of alleles (P-0.11 for comparison of selection of mutations at the two alleles). Among the 7 samples with selection at both alleles, 5 showed selection for both 86Y and D1246. Overall, consistent trends in the direction of selection were seen, although differences were not statistically significant. Our results suggest fitness advantages for parasites with the pfmdr1 86Y mutation and wild-type D1246, highlighting the complex interplay between drug resistance and fitness in malaria parasites. Copyright © 2013, American Society for Microbiology. All Rights Reserved. Source

Mawejje H.D.,Infectious Diseases Research Collaboration | Wilding C.S.,Vector Group | Rippon E.J.,Vector Group | Hughes A.,Vector Group | And 2 more authors.
Medical and Veterinary Entomology | Year: 2013

Insecticide resistance in the malaria vector Anopheles gambiae s.l. (Diptera: Culicidae) threatens insecticide-based control efforts, necessitating regular monitoring. We assessed resistance in field-collected An. gambiae s.l. from Jinja, Uganda using World Health Organization (WHO) biosassays. Only An. gambiae s.s. and An. arabiensis (≅70%) were present. Female An. gambiae exhibited extremely high pyrethroid resistance (permethrin LT50 > 2 h; deltamethrin LT50 > 5 h). Female An. arabiensis were resistant to permethrin and exhibited reduced susceptibility to deltamethrin. However, while An. gambiae were DDT resistant, An. arabiensis were fully susceptible. Both species were fully susceptible to bendiocarb and fenitrothion. Kdr 1014S has increased rapidly in the Jinja population of An. gambiae s.s. and now approaches fixation (≅95%), consistent with insecticide-mediated selection, but is currently at a low frequency in An. arabiensis (0.07%). Kdr 1014F was also at a low frequency in An. gambiae. These frequencies preclude adequately-powered tests for an association with phenotypic resistance. PBO synergist bioassays resulted in near complete recovery of pyrethroid susceptibility suggesting involvement of CYP450s in resistance. A small number (0.22%) of An. gambiae s.s. ×An. arabiensis hybrids were found, suggesting the possibility of introgression of resistance alleles between species. The high levels of pyrethroid resistance encountered in Jinja threaten to reduce the efficacy of vector control programmes which rely on pyrethroid-impregnated bednets or indoor spraying of pyrethroids. © 2012 The Royal Entomological Society. Source

Jagannathan P.,San Francisco General Hospital | Eccles-James I.,San Francisco General Hospital | Bowen K.,San Francisco General Hospital | Nankya F.,Infectious Diseases Research Collaboration | And 12 more authors.
PLoS Pathogens | Year: 2014

Although evidence suggests that T cells are critical for immunity to malaria, reliable T cell correlates of exposure to and protection from malaria among children living in endemic areas are lacking. We used multiparameter flow cytometry to perform a detailed functional characterization of malaria-specific T cells in 78 four-year-old children enrolled in a longitudinal cohort study in Tororo, Uganda, a highly malaria-endemic region. More than 1800 episodes of malaria were observed in this cohort, with no cases of severe malaria. We quantified production of IFNγ, TNFα, and IL-10 (alone or in combination) by malaria-specific T cells, and analyzed the relationship of this response to past and future malaria incidence. CD4+ T cell responses were measurable in nearly all children, with the majority of children having CD4+ T cells producing both IFNγ and IL-10 in response to malaria-infected red blood cells. Frequencies of IFNγ/IL10 co-producing CD4+ T cells, which express the Th1 transcription factor T-bet, were significantly higher in children with ≥2 prior episodes/year compared to children with <2 episodes/year (P<0.001) and inversely correlated with duration since malaria (Rho = -0.39, P<0.001). Notably, frequencies of IFNγ/IL10 co-producing cells were not associated with protection from future malaria after controlling for prior malaria incidence. In contrast, children with <2 prior episodes/year were significantly more likely to exhibit antigen-specific production of TNFα without IL-10 (P = 0.003). While TNFα-producing CD4+ T cells were not independently associated with future protection, the absence of cells producing this inflammatory cytokine was associated with the phenotype of asymptomatic infection. Together these data indicate that the functional phenotype of the malaria-specific T cell response is heavily influenced by malaria exposure intensity, with IFNγ/IL10 co-producing CD4+ T cells dominating this response among highly exposed children. These CD4+ T cells may play important modulatory roles in the development of antimalarial immunity. Source

Jagannathan P.,San Francisco General Hospital | Kim C.C.,San Francisco General Hospital | Greenhouse B.,San Francisco General Hospital | Nankya F.,Infectious Diseases Research Collaboration | And 9 more authors.
Science Translational Medicine | Year: 2014

Although clinical immunity to malaria eventually develops among children living in endemic settings, the underlying immunologic mechanisms are not known. The Vγ2+subset of γδ T cells have intrinsic reactivity to malaria antigens, can mediate killing of Plasmodium falciparum merozoites, and expand markedly in vivo after malaria infection in previously naïve hosts, but their role in mediating immunity in children repeatedly exposed to malaria is unclear. We evaluated γδ T cell responses to malaria among 4-year-old children enrolled in a longitudinal study in Uganda. We found that repeated malaria was associated with reduced percentages of Vγ2+γδ T cells in peripheral blood, decreased proliferation and cytokine production in response to malaria antigens, and increased expression of immunoregulatory genes. Further, loss and dysfunction of proinflammatory Vγ2+ γδ T cells were associated with a reduced likelihood of symptoms upon subsequent P. falciparum infection. Together, these results suggest that repeated malaria infection during childhood results in progressive loss and dysfunction of Vγ2+γδ T cells that may facilitate immunological tolerance of the parasite. Source

Discover hidden collaborations