Time filter

Source Type

Odenberger E.-L.,Industrial Development Center in Olofstrom | Schill M.,DYNAmore Nordic AB | Oldenburg M.,Lulea University of Technology
International Journal of Material Forming | Year: 2013

In this work constitutive models suitable for thermo-mechanical forming of the titanium alloy Ti-6Al-4V are evaluated. A tool concept for thermo-mechanical forming of a double-curved sheet metal component in Ti-6Al-4V is proposed. The virtual tool design is based on finite element (FE) analyses of thermo-mechanical sheet metal forming in which two different anisotropic yield criteria are evaluated and compared with an isotropic assumption to predict global forming force, draw-in, springback and strain localisation. The shape of the yield surface has been found important and the accuracy of the predicted shape deviation could be slightly improved by including the cooling procedure. The predicted responses show promising agreement with the corresponding experimental observations when the anisotropic properties of the material are considered. © 2012 Springer-Verlag France. Source

Odenberger E.-L.,Industrial Development Center in Olofstrom | Hertzman J.,Industrial Development Center in Olofstrom | Thilderkvist P.,Industrial Development Center in Olofstrom | Merklein M.,Friedrich - Alexander - University, Erlangen - Nuremberg | And 4 more authors.
International Journal of Material Forming | Year: 2013

Ti-6Al-4V is one of the most frequently used titanium alloy in aerospace applications such as for load carrying engine structures, due to their high strength to weight ratio in combination with favourable creep resistance at moderate operating temperatures. In the virtual development process of designing suitable thermo-mechanical forming processes for titanium sheet metal components in aero engine applications numerical finite element (FE) simulations are desirable to perform. The benefit is related to the ability of securing forming concepts with respect to shape deviation, thinning and strain localisation. The reliability of the numerical simulations depends on both models and methods used as well as on the accuracy and applicability of the material input data. The material model and related property data need to be consistent with the conditions of the material in the studied thermo-mechanical forming process. In the present work a set of material tests are performed on Ti-6Al-4V at temperatures ranging from room temperature up to 560°C. The purpose is to study the mechanical properties of the specific batch of alloy but foremost to identify necessary material model requirements and generate experimental reference data for model calibration in order to perform FE-analyses of sheet metal forming at elevated temperatures in Ti-6Al-4V. © 2012 Springer-Verlag France. Source

Odenberger E.-L.,Industrial Development Center in Olofstrom | Odenberger E.-L.,Lule University of Technology | Oldenburg M.,Lule University of Technology | Thilderkvist P.,Industrial Development Center in Olofstrom | And 3 more authors.
Journal of Materials Processing Technology | Year: 2011

In the aero engine industry alternative manufacturing processes for load carrying aero engine structures imply fabrication. The concept of fabrication involves simple forgings, sheet metals and small ingots of e.g. titanium alloys which are welded together and heat treated. In the concept phase of the product development process, accurate evaluations of candidate manufacturing processes with short lead times are crucial. In the design of sheet metal forming processes, the manual die try out of deep drawing tools is traditionally a time consuming, expensive and inexact process. The present work investigates the possibility to design hot forming tools, with acceptable accuracy at short lead times and with minimal need for the costly die try out, using finite element (FE) analyses of hot sheet metal forming in the titanium alloy Ti-6Al-4V. A rather straightforward and inexpensive approach of material modelling and methods for material characterisation are chosen, suitable for early evaluations in the concept phase. Numerical predictions of punch force, draw-in and shape deviation are compared with data from separate forming experiments performed at moderately elevated temperatures. The computed responses show promising agreement with experimental measurements and the predicted shape deviation is within the sheet thickness when applying an anisotropic yield criterion. Solutions for the hot forming tool concept regarding heating and regulation, insulation, blank holding and tool material selection are evaluated within the present work. © 2011 Elsevier B.V. All rights reserved. Source

Discover hidden collaborations