Entity

Time filter

Source Type

Madrid, Spain

Indra , also known as Śakra in the Vedas, is the leader of the Devas or gods and the lord of Svargaloka or heaven in Hinduism. He is the god of rain and thunderstorms. He wields a lightning thunderbolt known as vajra and rides on a white elephant known as Airavata. Indra is the supreme deity and is the brother of Varuna and Yama and is also mentioned as an Āditya, son of Aditi. His home is situated on Mount Meru in the heaven. He has many epithets, notably vṛṣan the mighty, and vṛtrahan, slayer of Vṛtra, Meghavahana "the one who rides the clouds" and Devapati "the lord of gods or devas". Indra appears as the name of a daeva in Zoroastrianism , while his epithet, Verethragna, appears as a god of victory. Indra is also called Śakra frequently in the Vedas and in Buddhism . He is known in Burmese as သိကြားမင်း, pronounced: ; in Thai as พระอินทร์ Phra In, in Khmer as ព្រះឥន្ទ្រា pronounced , in Malay as Indera,in Kannada as ಇಂದ್ರ Indra, in Telugu as ఇంద్రుడు Indrudu, in Tamil as இந்திரன் Inthiran, Chinese as 帝释天 Dìshìtiān, and in Japanese as 帝釈天 Taishakuten. He is celebrated as a demiurge who pushes up the sky, releases Ushas from the Vala cave, and slays Vṛtra; both latter actions are central to the Soma sacrifice. He is associated with Vajrapani - the Chief Dharmapala or Defender and Protector of the Buddha, Dharma and Sangha who embodies the power of the Five Dhyani Buddhas. On the other hand, he also commits many kinds of mischief for which he is sometimes punished. In Puranic mythology, Indra is bestowed with a heroic and almost brash and amorous character at times, even as his reputation and role diminished in later Hinduism with the rise of the Trimurti. Wikipedia.


Grant
Agency: Cordis | Branch: H2020 | Program: CS2-IA | Phase: JTI-CS2-2014-CFP01-SYS-02-02 | Award Amount: 2.12M | Year: 2016

This proposal presented by Indra Sistemas and CEIT jointly, try to answer in the best way the call JTI-CS2-2014-CFP01-SYS-02-02. The referred call and this associated proposal are framed inside of the packet 4.1.2.4 (Modular power controller for advanced landing system) of the System ITD for the Cleansky2 project. This project will develop a next generation power controller for electric taxi. This controller shall feature increased power density, bidirectional power conversion, modularity, scalability, and multifunctionality to support wide range of aircraft applications. Inside this global project of aircraft electrical moving on ground (e-TAXI), this concrete WP, try to answer the necessity of electrical power converters to: - Supply new electrical motors inside of the landing gear system (getting energy from electrical sources inside the aircraft) - Re-charge dedicated batteries inside the aircraft for the landing gear system. This function will help to have additional power available in batteries to be used when necessary, as in acceleration moments. Moreover, the re-charge will be done when aircraft speed on ground is enough or there is a necessity of braking (producing electrical braking over the motors). Then, proposal solution in this call develops a solution answering both functions and getting a global optimization of the system. This solution is done in accordance with aeronautical standards (environmental constrains), where the participants in this proposal have a vast experience. This proposal is presented by the consortium INDRA & CEIT that have all competences and skills to develop this project in time and performances, based in its experience in bidirectional and modular power electronic converters and well-known aeronautic standards, rules and process, more when Indra base its business in manufacturing of aeronautic equipment and system, totally verified and qualified.


Patent
Indra | Date: 2013-03-15

The subject invention provides a flight simulator, having a folded state and an unfolded state, having a chassis, an inner display and support that may be stowed or deployed, and an outer display and support that may be stowed or deployed.


Compression and decompression of data at high speed in solid state storage is described, including accessing a compressed data comprising a plurality of blocks of the compressed data, decompressing each of the plurality of blocks in a first stage of decompression to produce a plurality of partially decompressed blocks, and reconstructing an original data from the partially decompressed blocks in a second stage of decompression.


Grant
Agency: Cordis | Branch: H2020 | Program: IA | Phase: ICT-01-2014 | Award Amount: 7.65M | Year: 2015

Smart cyber-physical systems (CPS) are considered to be the next revolution in ICT with lots of game-changing business potential for integrated services and products. Mastering the engineering of complex and trustworthy CPS is key to implementing CPS-based business models. Current CPS, however, are often engineered and maintained at very high cost and sometimes with unknown risks, and recent technological progress from R&D projects is not readily available to most innovators. The CPS Engineering Labs (CPSE Labs) therefore equips innovators - businesses, researchers, and students - with CPS engineering infrastructure, knowledge, and tools for realizing novel CPS-based products and services, with the explicit goal of expediting and accelerating the realization of smart CPS. The CPSE Labs build upon existing R&D centres - in Madrid, Munich, Oldenburg, Newcastle, Stockholm, and Toulouse - and turn these already excellent regional clusters into world-class hotspots for CPS engineering. The design centers develop and maintain a common strategic innovation agenda for building up novel and complete CPS value chains. Based on this strategy the CPSE Labs build up and maintain a portfolio of added-value experiments. Experiments are focused and fast-track and they have a clear innovation objective; they build upon results and achievements from large-scale national and European projects on the rigorous design of embedded systems and CPS. Experience gained from experiments, validation results, and best practices, cross-cutting engineering principles that underpin the integration of cyber and physical elements of CPS are continuously integrated and disseminated by the CPSE Labs. The CPSE Labs marketplace provides an open forum for sharing platforms, architectures, and software tools for the engineering of dependable and trustworthy CPS. The ultimate goal is to establish a CPS engineering framework which sets a world-wide standard.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: EINFRA-1-2014 | Award Amount: 11.14M | Year: 2015

The INDIGO-DataCloud project (INDIGO for short) aims at developing a data/computing platform targeted at scientific communities, deployable on multiple hardware, and provisioned over hybrid (private or public) e-infrastructures. This platform will be built by leading European developers, resource providers, e-infrastructures and scientific communities in order to ensure its successful exploitation and sustainability. All members of the consortium share the common interest in developing advanced middleware to sustain the deployment of service models and user tools to tackle the challenges of the Big Data era. INDIGO will exploit the formidable know-how that was built in Europe along the past ten years of collaborations on scientific computing based on different consolidated and emerging paradigms (HPC, Grid and Cloud). Regarding Cloud computing, both the public and private sectors are already offering IaaS-type Cloud resources. However, numerous areas are of interest to scientific communities where Cloud computing uptake is currently lacking, especially at the PaaS and SaaS levels. The project therefore aims at developing tools and platforms based on open source solutions addressing scientific challenges in the Cloud computing, storage and network areas. INDIGO will allow application development and execution on Cloud and Grid based infrastructures, as well as on HPC clusters. The project will extend existing PaaS solutions, allowing public and private e-infrastructures, including those provided by EGI, EUDAT, PRACE and HelixNebula, to integrate their existing services, make them available through GEANT-compliant federated and distributed AA policies, guaranteeing transparency and trust in the provisioning of such services. INDIGO will also address the development of a flexible and modular presentation layer connected to the expanded PaaS and SaaS frameworks developed by the project and allowing innovative user experiences, also from mobile appliances.

Discover hidden collaborations