Time filter

Source Type

Bloomington, IN, United States

Indiana University Bloomington is a public research university located in Bloomington, Indiana, United States. With over 40,000 students, IU Bloomington is the flagship institution of the Indiana University system and its largest university.It is a member of the Association of American Universities and has numerous schools and programs the comprise part of IU, including the Jacobs School of Music, the IU School of Informatics and Computing, the Kelley School of Business, the School of Public Health, the School of Nursing, the School of Public and Environmental Affairs, the Maurer School of Law, the IU School of Library and Information Science, and the IU School of Education.With a Fall 2014 total campus enrollment of 42,634 students, IU Bloomington is the largest university campus in the state. While 55.2% of the student body was from Indiana, students from 49 of the 50 states, Washington D.C., and 165 foreign nations were also enrolled. The university is home to an extensive student life program, with about 17 percent of undergraduates joining the Greek system. Indiana athletic teams compete in Division I of the NCAA and are known as the Indiana Hoosiers. The university is a member of the Big Ten Conference. Wikipedia.

Bush K.,Indiana University Bloomington
Current Opinion in Microbiology | Year: 2010

Resistance to β-lactams and other antibiotics in the Enterobacteriaceae is frequently associated with plasmidic resistance determinants that are easily transferred among species. β-Lactamase-mediated resistance is increasingly associated with plasmid-encoded extended-spectrum β-lactamases (ESBLs) and carbapenemases, specifically the CTX-M family of ESBLs, the KPC family of serine carbapenemases, and the VIM, IMP, and NDM-1 metallo-β-lactamases. Although clonal dispersion of resistant isolates was seen initially, more diverse genetic platforms are being observed as variations of mobile elements are transferred worldwide. These enzymes are now appearing in multiple combinations of ESBLs and carbapenemases, thereby conferring resistance to virtually all β-lactam antibiotics. © 2010.

Kijimoto T.,Indiana University Bloomington
Proceedings of the National Academy of Sciences of the United States of America | Year: 2012

Sex-specific trait expression is frequently associated with highly variable, condition-dependent expression within sexes and rapid divergence among closely related species. Horned beetles are an excellent example for studying the molecular basis of these phenomena because horn morphology varies markedly among species, between sexes, and among alternative, nutritionally-cued morphs within sexes. In addition, horns lack obvious homology to other insect traits and provide a good opportunity to explore the molecular basis of the rapid diversification of a novel trait within and between species. Here we show that the sex-determination gene doublesex (dsx) underlies important aspects of horn development, including differences between sexes, morphs, and species. In male Onthophagus taurus, dsx transcripts were preferentially expressed in the horns of the large, horned morph, and RNAi-mediated knockdown of dsx dramatically altered male horn allometry by massively reducing horn development in large males, but not in smaller males. Conversely, dsx RNAi induced ectopic, nutrition-sensitive horn development in otherwise hornless females. Finally, in a closely related species (Onthophagus sagittarius) that has recently evolved a rare reversed sexual dimorphism, dsx RNAi revealed reversed as well as novel dsx functions despite an overall conservation of dsx expression. This suggests that rapid evolution of dsx functions has facilitated the transition from a regular sexual dimorphism to a reversed sexual dimorphism in this species. Our findings add beetle horns to existing examples of a close relationship between dsx and sexual trait development, and suggest that dsx function has been coopted to facilitate both the evolution of environmentally-cued intrasexual dimorphisms and rapid species divergences in a novel trait.

Attari S.Z.,Indiana University Bloomington
Proceedings of the National Academy of Sciences of the United States of America | Year: 2014

In a national online survey, 1,020 participants reported their perceptions of water use for household activities. When asked for the most effective strategy they could implement to conserve water in their lives, or what other Americans could do, most participants mentioned curtailment (e.g., taking shorter showers, turning off the water while brushing teeth) rather than efficiency improvements (e.g., replacing toilets, retrofitting washers). This contrasts with expert recommendations. Additionally, some participants are more likely to list curtailment actions for themselves, but list efficiency actions for other Americans. For a sample of 17 activities, participants underestimated water use by a factor of 2 on average, with large underestimates for high water-use activities. An additional ranking task showed poor discrimination of low vs. high embodied water content in food products. High numeracy scores, older age, and male sex were associated with more accurate perceptions of water use. Overall, perception of water use is more accurate than the perception of energy consumption and savings previously reported. Well-designed efforts to improve public understanding of household water use could pay large dividends for behavioral adaptation to temporary or long-term decreases in availability of fresh water.

Radicchi F.,Indiana University Bloomington
Nature Physics | Year: 2015

The function of a real network depends not only on the reliability of its own components, but is affected also by the simultaneous operation of other real networks coupled with it. Whereas theoretical methods of direct applicability to real isolated networks exist, the frameworks developed so far in percolation theory for interdependent network layers are of little help in practical contexts, as they are suited only for special models in the limit of infinite size. Here, we introduce a set of heuristic equations that takes as inputs the adjacency matrices of the layers to draw the entire phase diagram for the interconnected network. We demonstrate that percolation transitions in interdependent networks can be understood by decomposing these systems into uncoupled graphs: the intersection among the layers, and the remainders of the layers. When the intersection dominates the remainders, an interconnected network undergoes a smooth percolation transition. Conversely, if the intersection is dominated by the contribution of the remainders, the transition becomes abrupt even in small networks. We provide examples of real systems that have developed interdependent networks sharing cores of 'high quality edges to prevent catastrophic failures. © 2015 Macmillan Publishers Limited. All rights reserved.

Kostelecky V.A.,Indiana University Bloomington | Russell N.,Northern Michigan University
Reviews of Modern Physics | Year: 2011

This work tabulates measured and derived values of coefficients for Lorentz and CPT violation in the standard-model extension. Summary tables are extracted listing maximal attained sensitivities in the matter, photon, and gravity sectors. Tables presenting definitions and properties are also compiled. © 2011 American Physical Society.

Discover hidden collaborations