Time filter

Source Type

Zhang F.,University of North Texas Health Science Center | Chen J.Y.,Indiana University | Chen J.Y.,Purdue University | Chen J.Y.,Indiana Center for Systems Biology and Personalized Medicine
BMC Medical Genomics | Year: 2013

Background: Early detection of breast cancer in blood is both appealing clinically and challenging technically due to the disease's illusive nature and heterogeneity. Today, even though major breast cancer subtypes have been characterized, i.e., luminal A, luminal B, HER2+, and basal-like, little is known about the heterogeneity of breast cancer in blood, which could help to discover minimally invasive protein biomarkers with which clinical researchers can detect, classify, and monitor different breast cancer subtypes. Results: In this study, we performed an integrative pathway-assisted clustering analysis of breast cancer subtypes from plasma proteome samples collected from 80 patients diagnosed with breast cancer and 80 healthy women. First, four breast cancer subtypes and additionally unknown subtype (according to existing annotation) were determined based on pathology lab test results in primary tumors of enrolled patients. Next, we developed and applied four distance metrics, i.e., Protein Intensity, Q-Value, Pathway Profile, and Distance Score Function, to measure and characterize these cancer subtypes. Then, we developed a permutation test to evaluate the significant protein level changes in each biological pathway for each breast cancer subtype, using q-value. Lastly, we developed a pathway-protein matrix for each of the four distance methods to estimate the distance between breast cancer subtypes, for which further Pathway Association Network analysis were performed. Conclusions: We found that 1) the luminal group (luminal A and luminal B) are clustered together, as well as the basal group (basal-like and HER2+) and 2) luminal A and luminal B are more close to each other than basal-like and HER2+ to each other. Our results were consistent with a recent independent breast cancer research from the Cancer Genome Atlas Network using genomic DNA copy number arrays, DNA methylation, exome sequencing, messenger RNA arrays, microRNA sequencing and reverse-phase protein arrays. Our results showed that changes of different breast cancer subtypes at the pathway level are more profound and less variable than those at the molecular level. Similar subtypes share distinct yet similar pathway activation networks, while dissimilar subtypes are different also at the level of pathway activation networks. The results also showed that distance or similarity of cancer subtypes based on pathway analysis might be able to provide further insight into the intrinsic relationship of breast cancer subtypes. We believe integrative pathway-assisted proteomics analysis described here can become a model for reliable clustering or classification of other cancer subtypes. © 2013 Chen; licensee BioMed Central Ltd. Source

Naylor S.,Predictive Physiology and Medicine PPM Inc. | Chen J.Y.,Indiana University | Chen J.Y.,Indiana Center for Systems Biology and Personalized Medicine | Chen J.Y.,Purdue University
Personalized Medicine | Year: 2010

We are all perplexed that current medical practice often appears maladroit in curing our individual illnesses or disease. However, as is often the case, a lack of understanding, tools and technologies are the root cause of such situations. Human individuality is an often-quoted term but, in the context of human biology, it is poorly understood. This is compounded when there is a need to consider the variability of human populations. In the case of the former, it is possible to quantify human complexity as determined by the 35,000 genes of the human genome, the 1-10 million proteins (including antibodies) and the 2000-3000 metabolites of the human metabolome. Human variability is much more difficult to assess, since many of the variables, such as the definition of race, are not even clearly agreed on. In order to accommodate human complexity, variability and its influence on health and disease, it is necessary to undertake a systematic approach. In the past decade, the emergence of analytical platforms and bioinformatics tools has led to the development of systems biology. Such an approach offers enormous potential in defining key pathways and networks involved in optimal human health, as well as disease onset, progression and treatment. The tools and technologies now available in systems biology analyses offer exciting opportunities to exploit the emerging areas of personalized medicine. In this article, we discuss the current status of human complexity, and how systems biology and personalized medicine can impact at the individual and population level. © 2010 Future Medicine Ltd. Source

Wang M.,Indiana University | Chen J.Y.,Indiana University | Chen J.Y.,Purdue University | Chen J.Y.,Indiana Center for Systems Biology and Personalized Medicine
Artificial Intelligence in Medicine | Year: 2010

Objective: The limitation of small sample size of functional genomics experiments has made it necessary to integrate DNA microarray experimental data from different sources. However, experimentation noises and biases of different microarray platforms have made integrated data analysis challenging. In this work, we propose an integrative computational framework to identify candidate biomarker genes from publicly available functional genomics studies. Methods: We developed a new framework, Gaussian Mixture Modeling-Coupled Information Gain (GMM-IG). In this framework, we first apply a two-component Gaussian mixture model (GMM) to estimate the conditional probability distributions of gene expression data between two different types of samples, for example, normal versus cancer. An expectation-maximization algorithm is then used to estimate the maximum likelihood parameters of a mixture of two Gaussian models in the feature space and determine the underlying expression levels of genes. Gene expression results from different studies are discretized, based on GMM estimations and then unified. Significantly differentially-expressed genes are filtered and assessed with information gain (IG) measures. Results: DNA microarray experimental data for lung cancers from three different prior studies was processed using the new GMM-IG method. Target gene markers from a gene expression panel were selected and compared with several conventional computational biomarker data analysis methods. GMM-IG showed consistently high accuracy for several classification assessments. A high reproducibility of gene selection results was also determined from statistical validations. Our study shows that the GMM-IG framework can overcome poor reliability issues from single-study DNA microarray experiment while maintaining high accuracies by combining true signals from multiple studies. Conclusions: We present a conceptually simple framework that enables reliable integration of true differential gene expression signals from multiple microarray experiments. This novel computational method has been shown to generate interesting biomarker panels for lung cancer studies. It is promising as a general strategy for future panel biomarker development, especially for applications that requires integrating experimental results generated from different research centers or with different technology platforms. © 2009 Elsevier B.V. Source

Wan P.,Capital Normal University | Wu J.,Capital Normal University | Zhou Y.,Capital Normal University | Xiao J.,Capital Normal University | And 7 more authors.
Genomics, Proteomics and Bioinformatics | Year: 2011

miRNAs are non-coding small RNAs that involve diverse biological processes. Until now, little is known about their roles in plant drought resistance. Physcomitrella patens is highly tolerant to drought; however, it is not clear about the basic biology of the traits that contribute P. patens this important character. In this work, we discovered 16 drought stress-associated miRNA (DsAmR) families in P. patens through computational analysis. Due to the possible discrepancy of expression periods and tissue distributions between potential DsAmRs and their targeting genes, and the existence of false positive results in computational identification, the prediction results should be examined with further experimental validation. We also constructed an miRNA co-regulation network, and identified two network hubs, miR902a-5p and miR414, which may play important roles in regulating drought-resistance traits. We distributed our results through an online database named ppt-miRBase, which can be accessed at http://bioinfor.cnu.edu.cn/ppt_miRBase/index.php. Our methods in finding DsAmR and miRNA co-regulation network showed a new direction for identifying miRNA functions. © 2011 Beijing Genomics Institute. Source

Zhang F.,University of North Texas Health Science Center | Wang M.,Indiana Center for Systems Biology and Personalized Medicine | Michael T.,University of North Texas Health Science Center | Drabier R.,University of North Texas Health Science Center
BMC Systems Biology | Year: 2013

Background: In the biopharmaceutical industry, biomarkers define molecular taxonomies of patients and diseases and serve as surrogate endpoints in early-phase drug trials. Molecular biomarkers can be much more sensitive than traditional lab tests. Discriminating disease biomarkers by traditional method such as DNA microarray has proved challenging. Alternative splicing isoform represents a new class of diagnostic biomarkers. Recent scientific evidence is demonstrating that the differentiation and quantification of individual alternative splicing isoforms could improve insights into disease diagnosis and management. Identifying and characterizing alternative splicing isoforms are essential to the study of molecular mechanisms and early detection of complex diseases such as breast cancer. However, there are limitations with traditional methods used for alternative splicing isoform determination such as transcriptome-level, low level of coverage and poor focus on alternative splicing.Results: Therefore, we presented a peptidomics approach to searching novel alternative splicing isoforms in clinical proteomics. Our results showed that the approach has significant potential in enabling discovery of new types of high-quality alternative splicing isoform biomarkers.Conclusions: We developed a peptidomics approach for the proteomics community to analyze, identify, and characterize alternative splicing isoforms from MS-based proteomics experiments with more coverage and exclusive focus on alternative splicing. The approach can help generate novel hypotheses on molecular risk factors and molecular mechanisms of cancer in early stage, leading to identification of potentially highly specific alternative splicing isoform biomarkers for early detection of cancer. © 2013 Zhang et al.; licensee BioMed Central Ltd. Source

Discover hidden collaborations