Time filter

Source Type

Chennai, India

The Indian Institutes of Technology is a prestigious group of autonomous public engineering and management institutes of India. The IITs are governed by the Institutes of Technology Act, 1961 which has declared them as "institutions of national importance", and lays down their powers, duties, framework for governance etc. The Institutes of Technology Act, 1961 lists sixteen institutes located at Bhubaneswar, Chennai, Delhi, Gandhinagar, Guwahati, Hyderabad, Indore, Jodhpur, Kanpur, Kharagpur, Mandi, Mumbai, Patna, Ropar, Roorkee and Varanasi. Each IIT is an autonomous institution, linked to the others through a common IIT Council, which oversees their administration. The IITs award degrees ranging from B.Tech to PhD.The IITs have a common admission process for undergraduate admissions. It was called IIT-JEE, which was replaced by Joint Entrance Examination in 2013. The post-graduate level program that awards M.Tech degree in engineering is administered by the older IITs . M.Tech admission is done on the basis of Graduate Aptitude Test in Engineering . In addition to B.Tech and M.Tech programs IITs also award other graduate degrees such as M.Sc in Engineering, Maths, Physics and Chemistry, MBA, PhD etc. Admission to these programs of IITs is done through Common Admission Test, Joint Admission Test for Masters and Common Entrance Examination for Design . Wikipedia.

Raman M.,Indian Institute of Technology Madras
Gut microbes | Year: 2013

Colorectal Cancer (CRC) is the second leading cause of cancer-related mortality and is the fourth most common malignant neoplasm in USA. Escaping apoptosis and cell mutation are the prime hallmarks of cancer. It is apparent that balancing the network between DNA damage and DNA repair is critical in preventing carcinogenesis. One-third of cancers might be prevented by nutritious healthy diet, maintaining healthy weight and physical activity. In this review, an attempt is made to abridge the role of carcinogen in colorectal cancer establishment and prognosis, where special attention has been paid to food-borne mutagens and functional role of beneficial human gut microbiome in evading cancer. Further the significance of tailor-made prebiotics, probiotics and synbiotics in cancer management by bio-antimutagenic and desmutagenic activity has been elaborated. Probiotic bacteria are live microorganisms that, when administered in adequate amounts, confer a healthy benefit on the host. Prebiotics are a selectively fermentable non-digestible oligosaccharide or ingredient that brings specific changes, both in the composition and/or activity of the gastrointestinal microflora, conferring health benefits. Synbiotics are a combination of probiotic bacteria and the growth promoting prebiotic ingredients that purport "synergism." Source

Naganathan A.N.,Indian Institute of Technology Madras
Journal of Physical Chemistry B | Year: 2013

Engineering the conformational stabilities of proteins through mutations has immense potential in biotechnological applications. It is, however, an inherently challenging problem given the weak noncovalent nature of the stabilizing interactions. In this regard, we present here a robust and fast strategy to engineer protein stabilities through mutations involving charged residues using a structure-based statistical mechanical model that accounts for the ensemble nature of folding. We validate the method by predicting the absolute changes in stability for 138 experimental mutations from 16 different proteins and enzymes with a correlation of 0.65 and importantly with a success rate of 81%. Multiple point mutants are predicted with a higher success rate (90%) that is validated further by comparing meosphile-thermophile protein pairs. In parallel, we devise a methodology to rapidly engineer mutations in silico which we benchmark against experimental mutations of ubiquitin (correlation of 0.95) and check for its feasibility on a larger therapeutic protein DNase I. We expect the method to be of importance as a first and rapid step to screen for protein mutants with specific stability in the biotechnology industry, in the construction of stability maps at the residue level (i.e., hot spots), and as a robust tool to probe for mutations that enhance the stability of protein-based drugs. © 2013 American Chemical Society. Source

Kaisare N.S.,Indian Institute of Technology Madras | Vlachos D.G.,University of Delaware
Progress in Energy and Combustion Science | Year: 2012

Microcombustion research has flourished over the past decade. Yet, most of the commercial potential of microcombustion is still to come. Aside from portable electronics, emerging drivers stem from the energy problem of declining fossil fuel reserves and their large environmental footprint upon combustion. The need to capitalize on underutilized energy sources and renewables further stimulate energy research in microsystems. In this review paper, technological drivers, applications, devices, and fabrication protocols of microburners are presented. Then, a review of homogeneous, catalytic, homogeneous-heterogeneous and heat recirculating microburners is given. Results are presented that interpret literature findings. An outlook of microcombustion research is finally outlined. © 2011 Elsevier Ltd. All rights reserved. Source

Padmanabhan T.,Inter-University Center for Astronomy and Astrophysics | Kothawala D.,Indian Institute of Technology Madras
Physics Reports | Year: 2013

Lanczos-Lovelockmodels of gravity represent a natural and elegant generalization of Einstein's theory of gravity to higher dimensions. They are characterized by the fact that the field equations only contain up to second derivatives of the metric even though the action functional can be a quadratic or higher degree polynomial in the curvature tensor. Because these models share several key properties of Einstein's theory they serve as a useful set of candidate models for testing the emergent paradigm for gravity. This review highlights several geometrical and thermodynamical aspects of Lanczos-Lovelockmodels which have attracted recent attention. © 2013 Elsevier B.V. Source

Naganathan A.N.,Indian Institute of Technology Madras
Journal of Chemical Theory and Computation | Year: 2012

Charged residues on the surface of a protein are known hot-spots for post-translational modification, protein/ligand-binding, and tuning conformational stabilities. Recent experimental evidence points to the fact that surface electrostatics can also modulate thermodynamic barriers and hence folding mechanisms. To probe for this behavior across different proteins, we develop a novel version of the Wako-Saitô-Muñoz-Eaton (WSME) model in which we include an electrostatic potential term in the energy function while simplifying the treatment of solvation free energy. Both of the energy terms are obtained by quantitatively fitting the model to differential scanning calorimetry (DSC) experiments that carry critical information on the protein partition function. We characterize four sets of structural/functional homologues (HEWL/BLA, CspB, engrailed, α-spectrin) either by fitting the experimental data of a single domain in the homologous set and predicting the conformational behavior of the rest with the same set of parameters or by performing semiblind predictions. The model with the added electrostatic term is able to successfully reproduce the order of thermodynamic stabilities and relaxation rates of most of the homologues. In parallel, we predict diverse conformational features including a wide range of thermodynamic barriers (∼9-40 kJ/mol), broad native ensembles in helical proteins, structured unfolded states and intermediates, rugged folding landscapes, and further provide an independent protein-specific estimate of the folding speed limit at 298 K (1/(7-300 μs)). Our results are evidence that protein surface electrostatics can be tailored to not only engineer stabilities but also folding mechanisms and the ruggedness of the underlying landscape. © 2012 American Chemical Society. Source

Discover hidden collaborations