Bangalore, India

Indian Institute of Science

www.iisc.ernet.in
Bangalore, India

Indian Institute of Science is a public university for scientific research and higher education located in Bengaluru , India. Established in 1899 with active support from Jamshetji Tata it is also locally known as the "Tata Institute". It acquired the status of a Deemed University in 1958. IISc is widely regarded as India's finest institution in its field, and has made significant contribution to advanced computing, space, and nuclear technologies. Wikipedia.

SEARCH FILTERS
Time filter
Source Type

Patent
Indian Institute of Science | Date: 2017-07-19

An electrochemically active device is provided for collecting and retaining a blood sample with at least a two-electrode member connected to conductive tracks. A receptor with an integral receptor-membrane arranged on the two-electrode member, to receive non-electrochemically active heamoglobin bioanalyte and its complexes from red blood cells (RBC) of said blood sample, through a lysing agent and convert the non-electrochemically active heamoglobin bioanalyte and its complexes, into an electrochemically active bioanalyte and its electrochemically active complexes. The present invention also provides a point-of-care biosensor incorporated with the device of the present invention and method of measuring for the detection and quantitative measurement of concentrations of haemoglobin (Hb), glycated haemoglobin (GHb), methaemoglobin (MetHb) and myoglobin, in reduced volumes of blood samples, by determining redox current values in the reduced volumes of blood samples.


Patent
Indian Institute of Science | Date: 2017-07-19

An electrochemically active device for collecting and retaining a biological sample with a bioanalyte, the device provided with at least a two-electrode member and an albumin-binding and an electrochemically active receptor in chemical contact with the two-electrode members and the biological sample. The present invention also provides a point-of-care biosensor with the device of the present invention and a method for measuring a bioanalyte in a biological sample. The device, point-of-care biosensor and the method of the present invention facilitate accurate measurements concentrations of urine albumin, human serum albumin (HSA), glycated albumin (GA) and methemalbumin (MHA) by determining redox current values in reduced volumes of biological samples.


The invention is for an increased isoprenoid production by carotenoid optimization in an expression system and the carotegenic gene for optimization may be geranylgeranyl diphosphate synthase (GGPPS), phytoene synthase (PSY1), conserved CRTI or mutated CRT1_(A393T), BT1 of S. cerevisae. The carotogenic gene from red yeast which includes Rhodosporidium spp. Rhodotorula spp, Sporidiobolus spp., Leucosporidium spp., Sporobolomyes spp. is selected.


Patent
Indian Institute of Science | Date: 2015-04-29

The present disclosure relates to a polypeptide comprising hemagglutinin stem domain fragments that can elicit broadly cross-reactive anti-influenza antibodies and confer protection against influenza virus. The disclosure also provides a method of preparing the polypeptide with biochemical and biophysical properties that enhance its immunogenic properties. Also provided are recombinant DNA constructs, vectors, and host cells comprising the nucleic acid encoding the polypeptide, as well as uses of the polypeptide, particularly in the prevention, and detection of influenza.


Patent
Indian Institute of Science | Date: 2017-01-25

The present invention relates to compounds that inhibit the activity of Type III deiodinase (DIO3). The present invention further relates to methods for treating or preventing depression, depression associated with other psychiatric or general medical diseases or conditions, condition amenable to treatment with known anti-depressants and cancer, particularly by using the compounds of the invention.


Patent
Indian Institute of Science | Date: 2017-03-08

The present disclosure relates to a polypeptide comprising hemagglutinin stem domain fragments that can elicit broadly cross-reactive anti-influenza antibodies and confer protection against influenza virus. The disclosure also provides a method of preparing the polypeptide with biochemical and biophysical properties that enhance its immunogenic properties. Also provided are recombinant DNA constructs, vectors, and host cells comprising the nucleic acid encoding the polypeptide, as well as uses of the polypeptide, particularly in the prevention, and detection of influenza.


Patent
Indian Institute of Science | Date: 2015-03-21

Embodiments herein present the invention of a class of Tungsten (W) free Cobalt based (-) superalloys with the basic chemical composition comprising in % by weight: 0.5 to 10 Aluminium (Al) and 1 to 15 Molybdenum (Mo) with at least one or both of 0.5 to 12 Niobium (Nb) and 0.5 to 12 Tantalum (Ta), with the remainder being Cobalt (Co). Some part of the cobalt can be replaced by nickel (50% or less). In Nickel added alloys, some part of either cobalt of nickel can be replaced by at least one among the transition metal selected from the group consisting of 10% or less Iridium, 10% or less Platinum, 10% or less Palladium, 15% or less Chromium and combination thereof. Again in nickel added alloys, further addition of at least one among the transition metals zirconium (5% or less), hafnium (5% or less), vanadium (5% or less), titanium (5% or less), and yttrium (5% or less), boron (2% or less), carbon (2% or less), rhenium (10% or less), ruthenium (5% or less) for further fine tune the solvus temperature, volume fraction of and creep properties.


The invention discloses a method for the synthesis of monodispersed luminescent quantum dots of transition metal dichalcogenides (TMDC), single- or few-layered, using a single-step electrochemical exfoliation that involves dilute ionic liquid and water. The method disclosed helps to obtain nanoclusters of TMDC of desired size including small sizes ranging up to 6 nm, by varying the concentration of the electrolyte and the applied DC voltage. The invention further discloses a method by which mono- or few-layered luminescent transition metal dichalcogenides can be directly deposited onto conducting substrates in a uniform manner. The monodispersed single- or few-layered luminescent TMDC and electro-deposited substrates exhibit improved electronic conductivity and new active sites, making them suitable as high-performance electrocatalysts in hydrogen evolution reactions in solar water-splitting applications and also as electrodes for solar cell applications.


The present disclosure relates to aluminum based alloys and a method for producing the aluminium based alloys. The method comprises acts of, casting of the aluminium based alloy in a chilled casting mould. Then, aging the cast aluminium based alloy at a first predetermined temperature for a first predetermined time. The aging results in the formation of a first precipitate. Followed by this, solutionizing the aluminium based alloy at a second predetermined temperature for a second predetermined time such that the major alloying element is dissolved in aluminium matrix without much affecting the first precipitate. Then, aging the aluminium based alloy at a third predetermined temperature for a third predetermined time. The aging results in the formation of a second precipitate.


Desiraju G.R.,Indian Institute of Science
Journal of the American Chemical Society | Year: 2013

How do molecules aggregate in solution, and how do these aggregates consolidate themselves in crystals? What is the relationship between the structure of a molecule and the structure of the crystal it forms? Why do some molecules adopt more than one crystal structure? Why do some crystal structures contain solvent? How does one design a crystal structure with a specified topology of molecules, or a specified coordination of molecules and/or ions, or with a specified property? What are the relationships between crystal structures and properties for molecular crystals? These are some of the questions that are being addressed today by the crystal engineering community, a group that draws from the larger communities of organic, inorganic, and physical chemists, crystallographers, and solid state scientists. This Perspective provides a brief historical introduction to crystal engineering itself and an assessment of the importance and utility of the supramolecular synthon, which is one of the most important concepts in the practical use and implementation of crystal design. It also provides a look to the future from the viewpoint of the author, and indicates some directions in which this field might be moving. © 2013 American Chemical Society.

Loading Indian Institute of Science collaborators
Loading Indian Institute of Science collaborators