Time filter

Source Type

Narendar S.,Indian Defence Institute of Advanced Technology | Gopalakrishnan S.,Indian Institute of Science
Physica E: Low-Dimensional Systems and Nanostructures | Year: 2010

In this paper, the nonlocal elasticity theory has been incorporated into classical Euler-Bernoulli rod model to capture unique features of the nanorods under the umbrella of continuum mechanics theory. The strong effect of the nonlocal scale has been obtained which leads to substantially different wave behaviors of nanorods from those of macroscopic rods. Nonlocal Euler-Bernoulli bar model is developed for nanorods. Explicit expressions are derived for wavenumbers and wave speeds of nanorods. The analysis shows that the wave characteristics are highly over estimated by the classical rod model, which ignores the effect of small-length scale. The studies also shows that the nonlocal scale parameter introduces certain band gap region in axial wave mode where no wave propagation occurs. This is manifested in the spectrum cures as the region where the wavenumber tends to infinite (or wave speed tends to zero). The results can provide useful guidance for the study and design of the next generation of nanodevices that make use of the wave propagation properties of single-walled carbon nanotubes. © 2010 Elsevier B.V. All rights reserved.

Singh A.,Indian Defence Institute of Advanced Technology
Advanced Powder Technology | Year: 2010

The present study investigates the electrical and sensing properties of mechanically compacted pellets of nanosized zinc oxide powders synthesized by chemical method at room temperature in alcohol base using Triethanolamine (TEA) as capping agent. Synthesized ZnO particles has been characterized for its optical, structural, morphological properties using UV-VIS spectrophotometer, X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). The ZnO particles have hexagonal wurtzite structure and the particles are of 20-30 nm in size. The electrical properties of the prepared material have been investigated with Impedance Spectroscopy at different temperatures and frequencies and other laboratory setup. Resistivity, I-V curves, AC impedance of ZnO nanoparticles pellets with temperature was investigated and response was compared with commercial ZnO. Piezoelectric and oxygen sensing property of ZnO were also examined. Dynamic hysteresis of sintered ZnO pellet using axis ACCT TF analyzer 2000HS did not show polarization retention by sample. Oxygen sensing of ZnO pellet has been investigated for different concentrations of oxygen for the temperature range of 200-350 °C. The decrease of the current flow through the ZnO pellet with increasing oxygen concentration indicates the application of ZnO in oxygen sensing. The prepared ZnO particles were also used for preparing nanofluids of different concentrations and were characterized by measuring thermal conductivity using hot wire method which shows sigmoidal behavior over a temperature range of 10-50 °C. © 2010 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology Japan. All rights reserved.

Talole S.E.,Indian Defence Institute of Advanced Technology | Kolhe J.P.,Indian Defence Institute of Advanced Technology | Phadke S.B.,College of Engineering, Pune
IEEE Transactions on Industrial Electronics | Year: 2010

In this paper, a feedback linearization (FL)-based control law made implementable using an extended state observer (ESO) is proposed for the trajectory tracking control of a flexible-joint robotic system. The FL-based controller cannot be implemented unless the full transformed state vector is available. The design also requires exact knowledge of the system model making the controller performance sensitive to uncertainties. To address these issues, an ESO is designed, which estimates the state vector, as well as the uncertainties in an integrated manner. The FL controller uses the states estimated by ESO, and the effect of uncertainties is compensated by augmenting the FL controller with the ESO-estimated uncertainties. The closed-loop stability of the system under the proposed observercontroller structure is established. The effectiveness of the ESO in the estimation of the states and uncertainties and the effectiveness of the FL + ESO controller in tracking are demonstrated through simulations. Lastly, the efficacy of the proposed approach is validated through experimentation on Quanser's flexible-joint module. © 2010 IEEE.

Patil S.B.,Indian Defence Institute of Advanced Technology | Singh A.K.,Indian Defence Institute of Advanced Technology
Electrochimica Acta | Year: 2011

In the present study, we report the optimization of various deposition parameters viz. bath temperature, deposition time and current density to deposit densely packed and vertically aligned ZnO nanorod thin films on cost effective substrate, i.e. steel, by electrodeposition technique. The obtained vertically aligned ZnO nanorod thin films are sensitized by CdS quantum dots (QDs) and utilized for photoelectrochemical (PEC) cell application. Effect of redox electrolyte on the PEC cell properties of CdS QDs sensitized ZnO nanorod thin films is investigated using two different electrolytes viz. polysulfide and ferro(i)cyanide.1 CdS QDs, of around 10 nm in diameter, are synthesized by chemical bath deposition (CBD) method. The deposited ZnO nanorods having diameter in the range 100-120 nm showed hydrophobic nature, which changed to hydrophilic after CdS QDs sensitization. The maximum short circuit current density (Jsc) and open circuit voltage (Voc) are observed for ferro(i)cyanide electrolyte and are found to be 680 μA cm -2 and 520 mV, respectively, under 10 mW cm-2 of illumination. However, better photoelectrode stability is observed for polysulfide electrolyte. © 2011 Elsevier Ltd. All rights reserved.

Panigrahi S.K.,Indian Defence Institute of Advanced Technology
Composites Part B: Engineering | Year: 2013

This paper deals with the structural design of single lap joints (SLJs) with delaminated adherends using fracture mechanics principles. The interlaminar stresses and Strain Energy Release Rate (SERR) are considered as damage characterizing parameters used for designing the SLJ when delamination damages are pre-embedded in both the adherends at similar positions. Three dimensional geometrically non-linear finite element analyses (FEAs) of SLJ with delaminated adherends have been performed to determine the interlaminar and SERR values along the delamination fronts by simulating the simultaneous interaction delamination damages when pre-embedded at similar positions in both the adherends. SERR values are evaluated using Modified Crack Closure Technique (MCCI) which is based on energy principle. The delaminations are assumed to be of linear front, and have been considered to be embedded in both the laminated FRP composite adherends beneath the surface ply of the adhesively bonded SLJ. The delamination damages are presumed either to pre-exist or get evolved at the interlaminar locations. Such delaminations have been modelled using the sublaminate technique. The critical issues of modelling pre-embedded delamination damages are discussed in detail. The numerical results presented in this paper are based on the validated FE model compared with the available literature. Based on the present analyses, the structural design recommendations have been made for the SLJ when pre-embedded delamination damages are present in both the adherends. It is observed from the stress based design that the delamination damage when present in the bottom adherend is more detrimental for failure of SLJ compared to that for the case when it is present in the top adherend. Also, SERR based design reveals that the opening mode predominantly governs the propagation of delamination damage for all positions of the pre-embedded delaminations in both the adherends of the SLJ. © 2013 Elsevier Ltd.

Discover hidden collaborations