Time filter

Source Type

New Delhi, India

The Indian Council of Agricultural Research is an autonomous organisation under the Department of Agricultural Research and Education , Ministry of Agriculture, Government of India. Formerly known as Imperial Council of Agricultural Research, it was established on 16 July 1929 as a registered society under the Societies Registration Act, 1860 in pursuance of the report of the Royal Commission on Agriculture. The ICAR has its headquarters at New Delhi.The Council is the apex body for co-ordinating, guiding and managing research and education in agriculture including horticulture, fisheries and animal sciences in the entire country. With 100 ICAR institutes and 70 agricultural universities spread across the country this is one of the largest national agricultural systems in the world.The ICAR has played a pioneering role in ushering Green Revolution and subsequent developments in agriculture in India through its research and technology development that has enabled the country to increase the production of foodgrains by 5 times, horticultural crops by 9.5 times, fish by 12.5 times, milk 7.8 times and eggs 39 times since 1951 to 2014, thus making a visible impact on the national food and nutritional security. It has played a major role in promoting excellence in higher education in agriculture. It is engaged in cutting edge areas of science and technology development and its scientists are internationally acknowledged in their fields.Union Minister of Agriculture, Radha Mohan Singh is President and Dr. S. Ayyappan is Director General of ICAR. Wikipedia.

Raphael K.,Coffee Research Sub Station | Velmourougane K.,Indian Council of Agricultural Research
Biodegradation | Year: 2011

Coffee pulp is the main solid residue from the wet processing of coffee berries. Due to presence of anti-physiological and anti-nutritional factors, coffee pulp is not considered as adequate substrate for bioconversion process by coffee farmers. Recent stringent measures by Pollution Control authorities, made it mandatory to treat all the solid and liquid waste emanating from the coffee farms. A study was conducted to evaluate the efficiency of an exotic (Eudrilus eugeniae) and a native earthworm (Perionyx ceylanesis) from coffee farm for decomposition of coffee pulp into valuable vermicompost. Exotic earthworms were found to degrade the coffee pulp faster (112 days) as compared to the native worms (165 days) and the vermicomposting efficiency (77.9%) and vermicompost yield (389 kg) were found to significantly higher with native worms. The multiplication rate of earthworms (280%) and worm yield (3.78 kg) recorded significantly higher with the exotic earthworms. The percentage of nitrogen, phosphorous, potassium, calcium and magnesium in vermicompost was found to increase while C:N ratio, pH and total organic carbon declined as a function of the vermicomposting. The plant nutrients, nitrogen (80.6%), phosphorus (292%) and potassium (550%) content found to increase significantly in the vermicompost produced using native earthworms as compared to the initial values, while the calcium (85.7%) and magnesium (210%) content found to increase significantly in compost produced utilizing exotic worms. Vermicompost and vermicasts from native earthworms recorded significantly higher functional microbial group's population as compared to the exotic worms. The study reveals that coffee pulp can be very well used as substrate for vermicomposting using exotic (Eudrilus eugeniae) and native earthworm (Perionyx ceylanesis). © 2010 Springer Science+Business Media B.V.

Subhadra B.,University of New Mexico | Grinson-George,Indian Council of Agricultural Research
Journal of the Science of Food and Agriculture | Year: 2011

Food and fuel production are intricately interconnected. In a carbon-smart society, it is imperative to produce both food and fuel sustainably. Integration of the emerging biorefinery concept with other industries can bring many environmental deliverables while mitigating several sustainability-related issues with respect to greenhouse gas emissions, fossil fuel usage, land use change for fuel production and future food insufficiency. A new biorefinery-based integrated industrial ecology encompasses the different value chain of products, coproducts, and services from the biorefinery industries. This paper discusses a framework to integrate the algal biofuel-based biorefinery, a booming biofuel sector, with other industries such as livestock, lignocellulosic and aquaculture. Using the USA as an example, this paper also illustrates the benefits associated with sustainable production of fuel and food. Policy and regulatory initiatives for synergistic development of the algal biofuel sector with other industries can bring many sustainable solutions for the future existence of mankind. © 2010 Society of Chemical Industry.

Barat A.,Indian Council of Agricultural Research
Molecular biology reports | Year: 2012

Glycerol-3-phosphate dehydrogenase (GPDH) gene possibly plays a key role for cold acclimation process in snow trout during winter months when water temperature goes down to 4-5 °C. In this study, 1,012 bp nucleotide fragment of GPDH gene was obtained from two snow trout species (Schizothorax richardsonii and S. niger; family: Cyprinidae), distributed in several Himalayan rivers. The gene encoded a protein of 334 amino acids. The encoded protein sequence was very similar to GPDH of Danio rerio (94.36 %) using BLASTx searches. In S. richardsonii the qRT-PCR showed highest expression in muscle tissue followed by liver and also revealed 19 fold gene expression in liver tissue under cold (5 °C) in comparison with warm (15 °C) condition. The elevated expression levels of GPDH cDNA on cold treatment furthermore suggest that GPDH plays a role in stress related responses in S. richardsonii. The phylogenetic analysis showed that the two snow trout species GPDH share the same clade with characterized GPDHs from other teleost fishes suggesting a common evolutionary origin and a similar catalytic function. In addition, the Ka/Ks ratios of these sequences suggested that they are under purifying selection. Moreover, the expression profile of GPDH gene among co generic species of genus Schizothorax showed that GPDH cDNA expression was highest in S. richardsonii and lowest in S. esocinus which gives an indication of species specific adaptation in relation to different geographical areas.

Mitra B.C.,Indian Council of Agricultural Research
Defence Science Journal | Year: 2014

Biocomposites can supplement and eventually replace petroleum-based composite materials in several applications. Several critical issues related to bio-fiber surface treatments is to make it a more suitable matrix for composite application and promising techniques need to be solved to design biocomposite of interest. The main motivation for developing biocomposites has been and still is to create a new generation of fiber reinforced plastics material competitive with glass fiber reinforced ones which are environmentally compatible in terms of products, use and renewal. There is an immense opportunity in developing new biobased products, but the real challenge is to design suitable bio-based products through innovation ideas. Green materials are the wave of the future. Bionanocomposites have very strong future prospects, though the present low level of production, some deficiency in technology and high cost restrict them from a wide range of applications. © 2014, DESIDOC.

Ramesh S.V.,Indian Council of Agricultural Research
Molecular Biotechnology | Year: 2013

Of late non-coding RNAs (ncRNAs)-mediated gene silencing is an influential tool deliberately deployed to negatively regulate the expression of targeted genes. In addition to the widely employed small interfering RNA (siRNA)-mediated gene silencing approach, other variants like artificial miRNA (amiRNA), miRNA mimics, and artificial transacting siRNAs (tasiRNAs) are being explored and successfully deployed in developing non-coding RNA-based genetically modified plants. The ncRNA-based gene manipulations are typified with mobile nature of silencing signals, interference from viral genome-derived suppressor proteins, and an obligation for meticulous computational analysis to prevaricate any inadvertent effects. In a broad sense, risk assessment inquiries for genetically modified plants based on the expression of ncRNAs are competently addressed by the environmental risk assessment (ERA) models, currently in vogue, designed for the first generation transgenic plants which are based on the expression of heterologous proteins. Nevertheless, transgenic plants functioning on the foundation of ncRNAs warrant due attention with respect to their unique attributes like off-target or non-target gene silencing effects, small RNAs (sRNAs) persistence, food and feed safety assessments, problems in detection and tracking of sRNAs in food, impact of ncRNAs in plant protection measures, effect of mutations etc. The role of recent developments in sequencing techniques like next generation sequencing (NGS) and the ERA paradigm of the different countries in vogue are also discussed in the context of ncRNA-based gene manipulations. © 2013 Springer Science+Business Media New York.

Discover hidden collaborations