Time filter

Source Type

Kim M.I.,Incheon Fisheries Research Institute | Lee K.-Y.,Kunsan National University | Cho S.-M.,Kunsan National University
Fisheries and Aquatic Science | Year: 2014

PCR amplification with universal primer is a useful tool for speciation of symbionts in marine eukaryote coupled with robust separation method such as denaturing high performance chromatography (DHPLC). To overcome the biased amplification, clamping PCR is recommended to suppress the amplification of host gene. In this study, we evaluated the efficiency of rare gene detection for two kinds of clamping probes which were successfully utilized for eukaryotic symbiont analysis: C3 linked nucleotide (C3) and peptide nucleic acid (PNA). PNA was 3-4 orders of magnitude higher than that of C3 tested in clamping efficiency and rare gene detection. This represented that PNA could be a more competent clamping probe for the enhancement of PCR amplification for rare symbiont genes. © 2014 The Korean Society of Fisheries and Aquatic Science. Source

Kim H.J.,National Fishery Products Quality Management Services | Park J.S.,Sun Moon University | Choi M.C.,Incheon Fisheries Research Institute | Kwon S.R.,Sun Moon University
Fish and Shellfish Immunology | Year: 2016

Viral hemorrhagic septicemia (VHS) in olive flounder, Paralichthys olivaceus, causes significant economic loss for the flounder aquaculture industry in Korea. In this study, the immunogenicity of Poly(I:C) immunization with a live vaccine against the VHS virus (VHSV) was compared with that of a formalin-treated vaccine in the olive flounder. In vaccine trial I, fish pre-injected with Poly(I:C) were highly protected from VHSV infection 2 d later (survival rate: 96%) and the surviving fish (Poly(I:C)-VHSV group) showed a 100% survival rate against VHSV re-challenge. Mortality in fish pre-injected with diethylpyrocarbonate-treated water followed by injection with formalin-treated VHSV was only 2% (1 of 50 fish), whereas survivors (DEPC-FT VHSV group) showed an 80% survival rate. In vaccine trial II, 100% survival was observed in all Poly(I:C) vaccination groups-Poly(I:C)-VHSV 6, Poly(I:C)-VHSV 5, and Poly(I:C)-VHSV 4. In contrast, the survival rates of the groups administered the formalin-treated VHSV at a dose of 106, 105, and 104 TCID50 100 μL-1 fish-1 (DEPC-FT VHSV 6, DEPC-FT VHSV 5, and DEPC-FT VHSV 4) were only 8%, 12%, and 12%, respectively. The differences in the survival rates of the formalin-treated vaccine groups in trial I and trial II were attributed to the difference in the formalin-treatment period: the formalin-treated VHSV administered in trial I was not completely inactivated and worked as a live vaccine, which explains the 80% survival rate against VHSV challenge. Specific antibodies against VHSV were detected in sera from all vaccinated survivors, except the DEPC-VHSV 4 group. Furthermore, the specific antibody titers of fish vaccinated with the live and dead VHSV vaccines were similar, but the protective effects of the live and dead vaccines varied considerably. Our findings show that Poly(I:C) immunization with the live vaccine offers better protection than the formalin-treated vaccine against VHS in olive flounder and revealed that antibody levels are not a reliable indicator of the protective effect of the vaccine against the pathogen. In the future, elements of T cell immunity may be used as a means of evaluating the protective efficacy of a vaccine against VHSV instead of ELISA. © 2015 Elsevier Ltd. Source

Kim M.-S.,Incheon Fisheries Research Institute | Min E.,Pukyong National University | Kim J.-H.,Pukyong National University | Koo J.-K.,Incheon Fisheries Research Institute | Kang J.-C.,Pukyong National University
Fish and Shellfish Immunology | Year: 2015

Chinese shrimp Fennerpenaeus chinensis (mean length 1.86 ± 0.15 cm, and weight 137.4 ± 12.7 mg) were reared in the different concentrations of bio-floc (control, 60, 80, 100, 120, and 140%) for 90 days. The growth rate was significantly increased over 100% bio-floc concentrations. In the immunological parameters, the gene expression of proPO and lysozyme was considerably increased over 120% bio-floc concentrations. The gene expression of SP was notably elevated at 140% bio-floc concentration. In the antioxidant enzymes, the activity of SOD was considerably decreased over 80% bio-floc concentrations. A notable decline in the activity of CAT was observed over 120% bio-floc concentrations. The results indicate that rearing of Chinese shrimp in bio-floc system can induce the increase of growth performance, enhancement of immune responses, and reduction of oxidative stress. © 2015 Elsevier Ltd. Source

Discover hidden collaborations