Paris, France
Paris, France
SEARCH FILTERS
Time filter
Source Type

Grant
Agency: European Commission | Branch: FP7 | Program: CP-FP | Phase: HEALTH.2011.2.4.3-1 | Award Amount: 8.25M | Year: 2012

Background: A significant proportion of pre-diabetics, show macro and micro vascular complications associated with hyperglycaemia. Although many trials have demonstrated the efficacy of lifestyle and pharmaceutical interventions in diabetes prevention, no trial has evaluated the extent to which mid- and long-term complications can be prevented by early interventions on hyperglycaemia. Aims: To assess the long-term effects on multiple complications of hyperglycaemia of early intensive management of hyperglycaemia with sitagliptin, metformin or their combination added to lifestyle intervention (LSI) (diet and physical activity), compared with LSI alone in adults with non-diabetic intermediate hyperglycaemia (IFG, IGT or both). Study Design: Long-term, multi-centre, randomised, partially double blinded, placebo controlled, phase-IIIb clinical trial with prospective blinded outcome evaluation. Participants will be randomised to four parallel arms: 1) LSI \ 2 placebo tablets/day; 2) LSI \ 2 Metformin tablets of 850 mg/day; 3) LSI \ 2 Sitagliptin tablets of 50 mg/day; 4) LSI \ 2 tablets of a fixed-dose combination of Sitagliptin 50mg and Metformin 850 /day. Active intervention will last for at least 3 years, and additional follow-up up to 5 years. Setting and population: Males and Females with pre-diabetes (IFG, IGT or both) aged 45 to 74 years selected from primary care screening programs in 15 clinical centres from 12 countries: Australia, Austria, Bulgaria, Germany, Greece, Italy, Lithuania, Poland, Serbia, Spain, Switzerland and Turkey. (N=3000) Main Outcomes: The primary endpoint is a combined continuous variable: the microvascular complication ndex (MCI) composed by a linear combination of the Early Treatment Diabetic Retinopathy Study Scale (ETDRS) score (based on retinograms), the level of urinary albumin to creatinine ratio, and a measure of distal small fibre neuropathy (sudomotor test by SUDOSCAN), measured during baseline visit and at 36th and 60th month visits after randomisation. In addition, this project will include the evaluation of early novel serological biomarkers of systemic inflammation, early micro-vascular damage, non-alcoholic fatty liver disease, insulin sensitivity and insulin secretion, and measures of quality of life, sleep quality (somnograms) and neuropsychological evaluation. Vascular function and structure will be evaluated in a subset of participants (n=1000), including cIMT and microvascular endothelial function measured by EndoPAT. Expected results: By evaluating the effect of aggressive treatments in pre-diabetes for the early prevention of diabetes complication, this project has the potential of changing the current paradigm of early management of hyperglycaemia. The ultimate goal is the development of a standardized core protocol for the early prevention of microvascular and other complications, impacting social cost as a result not only in health care, but also in disabilities at work.


A method for performing an electrophysiological analysis implemented in a system includes: a series of electrodes to be placed on different regions of the human body; a DC voltage source controlled so as to produce DC voltage pulses; a switching circuit for selectively connecting the active electrodes to the voltage source, the active electrodes forming an anode and a cathode, and for connecting at least one other high-impedance passive electrode used to measure the potential reached by the body; and a measuring circuit for reading data representative of the current in the active electrodes, and data representative of the potentials generated on at least certain high-impedance electrodes in response to the application of the pulses, the data allowing a value to be determined for the electrochemical conductance of the skin. The method also regenerates a high-impedance electrode connected to the voltage source as a cathode.


Patent
Impeto Medical | Date: 2014-02-05

The invention provides an electrophysiological analysis system, in particular for detecting pathological states. This system comprises: electrodes intended to be placed in different regions of the body that are well away from each other; an adjustable DC voltage source for generating successive DC voltage pulses varying in magnitude from one pulse to another, the duration of the pulses being equal to or greater than about 0.2 seconds; a switching circuit for selectively connecting a pair of active electrodes to the voltage source and for connecting at least one other high-impedance electrode; and a measurement circuit for recording data representative of the current in the active electrodes and potentials on at least certain high-impedance connected electrodes in response to the application of said pulses. The range of voltages covered causes, from one pulse to another, the appearance or disappearance of electrochemical phenomena in the vicinity of the active electrodes.


Patent
Impeto Medical | Date: 2011-08-23

A method for detecting cystic fibrosis is disclosed, which is performed in a system comprising an anode and a cathode placed on different regions of the patient body, and an adjustable DC source, which is controlled in order to feed the anode with a DC current. The method includes applying DC voltage pulses of varying voltage values to the anode for given durations allowing the stabilization of electrochemical phenomena in the body in the vicinity of the electrodes, collecting data representative of the current between the electrodes, and of the potentials of the electrodes, for the different DC voltages, and from the data, computing data representative of the electrochemical skin conductance of the patient, and reconciling the latter data with reference data obtained in the same conditions on patients suffering or not from cystic fibrosis, and identifying the patient as suffering or not from cystic fibrosis.


A method for assessing sudomotor function of a patient for evaluating diabetic and autonomous neuropathy is disclosed. The method is performed in a system comprising electrodes intended to be placed on different regions of the patient body, and an adjustable DC source. The method includes applying on the electrodes DC voltage pulses of varying voltage values in order to stress sweat glands, the voltage pulses lasting given durations allowing the stabilization of electrochemical phenomena in the body, near the electrodes; collecting data representative of the current between the electrodes, and of the potential generated on the electrodes for the different DC voltages; from the data, computing results representative of the electrochemical skin conductance of the patient; reconciling the latter data with reference data obtained in the same conditions on patients identified as suffering or not from sudomotor, and identifying the patient as suffering or not from sudomotor dysfunction.


The present disclosure relates to a method of diagnosing a CIPN in a subject, the method including assessing the sudomotor function of the subject. Also disclosed are methods of monitoring progression of the disease, as well as methods of treating the condition.


Patent
Impeto Medical | Date: 2013-08-27

The disclosure relates to an electrophysiological analysis system including: a series of electrodes intended to be placed in different regions of the human body; a direct current voltage source; a control device adapted (i) to selectively apply direct current pulses, generated by the voltage source, to a pair of so-called active electrodes, the active electrodes forming an anode and a cathode, and (ii) to connect at least one other so-called passive electrode with high-impedance, the electrode measuring the potential reached by the body; and a measurement device arranged to obtain data representative of the current at the cathode and the potentials on at least some of the electrodes connected with high impedance, in response to the application of the pulses, which data can be used to determine a value for the electrochemical conductance of the skin. The system also includes a device for controlling the difference between the potential at the anode and the potential reached by the body, according to the voltage delivered by the direct current voltage source.


Patent
Impeto Medical | Date: 2014-11-25

The invention provides an electrophysiological analysis system, in particular for detecting pathological states. This system comprises: electrodes intended to be placed in different regions of the body that are well away from each other; an adjustable DC voltage source for generating successive DC voltage pulses varying in magnitude from one pulse to another, the duration of the pulses being equal to or greater than about 0.2 seconds; a switching circuit for selectively connecting a pair of active electrodes to the voltage source and for connecting at least one other high-impedance electrode; and a measurement circuit for recording data representative of the current in the active electrodes and potentials on at least certain high-impedance connected electrodes in response to the application of said pulses. The range of voltages covered causes, from one pulse to another, the appearance or disappearance of electrochemical phenomena in the vicinity of the active electrodes.


Patent
Impeto Medical | Date: 2014-10-24

A method for assessing sudomotor function of a patient for evaluating diabetic and autonomous neuropathy is disclosed. The method is performed in a system comprising electrodes intended to be placed on different regions of the patient body, and an adjustable DC source. The method includes applying on the electrodes DC voltage pulses of varying voltage values in order to stress sweat glands, the voltage pulses lasting given durations allowing the stabilization of electrochemical phenomena in the body, near the electrodes; collecting data representative of the current between the electrodes, and of the potential generated on the electrodes for the different DC voltages; from the data, computing results representative of the electrochemical skin conductance of the patient; reconciling the latter data with reference data obtained in the same conditions on patients identified as suffering or not from sudomotor, and identifying the patient as suffering or not from sudomotor dysfunction.


Patent
Impeto Medical | Date: 2015-02-04

The disclosure relates to an electrophysiological analysis system which includes a plurality of electrodes, a power supply for successively applying a substantially continuous voltage ranging approximately from 1 to 5 volts and lasting from 0.1 to 5 seconds to different slotted electrode pairs, a collecting and storing device for recording the variation of a current flow in the electrode pairs to which the voltage slots are applied, a device enabling the current variations obtained by comparison between at least two current variations caused by supposed identical conditions and a device comparing data related to the current variations recorded for several electrode pairs and enabled with reference data. The system can be used for chronoamperometrically detecting pathologies, pathological areas and organ dysfunctions.

Loading Impeto Medical collaborators
Loading Impeto Medical collaborators