Entity

Time filter

Source Type


Patent
Immunovative Therapies | Date: 2014-02-28

This invention relates to compositions and methods for immunotherapy of cancer. Specifically, a method of cancer immunotherapy is described which results in the systemic liquidation of both solid and metastatic tumors whereever they reside in the body. The compositions include activated allogeneic Th1 cells that when administered appropriately lead to liquidation of tumors. The method includes administering priming doses of the therapeutic composition, ablation of a selected tumor lesion along with intratumoral injection of the composition and then infusion of the therapeutic composition. These steps enable the systemic liquidation of tumors secondary to immune cell infiltration and leads to immune-mediated tumor eradication.


Patent
Immunovative Therapies | Date: 2014-03-12

A method of manipulating allogeneic cells for use in allogeneic cell therapy protocols is described. The method provides a composition of highly activated allogeneic T-cells which are infused into immunocompetent cancer patients to elicit a novel anti-tumor immune mechanism called the Mirror Effect. In contrast to current allogeneic cell therapy protocols where T-cells in the graft mediate the beneficial graft vs. tumor (GVT) and detrimental graft vs. host (GVH) effects, the allogeneic cells of the present invention stimulate host T-cells to mediate the mirror of these effects. The mirror of the GVT effect is the host vs. tumor (HVT) effect. The mirror of the GVH effect is the host vs. graft (HVG) effect. The effectiveness and widespread application of the anti-tumor GVT effect is limited by the severe toxicity of the GVH effect. In the present invention, the anti-tumor HVT effect occurs in conjunction with a non-toxic HVG rejection effect. The highly activated allogeneic cells of the invention can be used in methods to stimulate host immunity. The method includes a complete HLA mis-matched setting in patients that have not had a prior bone marrow transplant or received chemotherapy and/or radiation conditioning regimens.


Patent
Immunovative Therapies | Date: 2012-10-24

The present disclosure relates to an apparatus for dispensing biologic drug compositions. The apparatus includes an automated device that can store a biologic drug under the desired conditions. When authorized, the automated device can process the stored biologic drug by performing the desired processing steps to prepare the biologic drug for administration to a patient. The automated device may include a computing system to transmit patient information to a remote location and receive authorization from a remote location.


Patent
Immunovative Therapies | Date: 2014-02-05

A method of manipulating allogeneic cells for use in allogeneic cell therapy providing a composition of highly activated allogeneic T-cells which are infused into immunocompetent cancer patients to elicit a novel anti-tumor immune mechanism, or Mirror Effect. In contrast to current allogeneic cell therapy protocols where T-cells in the graft mediate the beneficial graft vs. tumor (GVT) and detrimental graft vs. host (GVH) effects, the allogeneic cells of the present invention stimulate host T-cells to mediate the mirror of these effects. The mirror of the GVT effect is the host vs. tumor (HVT) effect. The mirror of the GVH effect is the host vs. graft (HVG) effect The anti-tumor HVT effect occurs in conjunction with a non-toxic HVG rejection effect. The highly activated allogeneic cells of the invention can be used to stimulate host immunity in a complete HLA mis-matched setting in a patient.


Patent
Immunovative Therapies | Date: 2014-09-29

T-cells are generated with enhanced immunostimulatory capabilities for use in self therapy treatment protocols, by utilizing a biodegradable device with a biodegradable support that has one or more agents that are reactive to T-cell surface moieties. The biodegradable devices are mixed with the T-cells sufficiently so that the one or more agents cross-link with the T-cells surface moieties and deliver a signal to the T-cells to enhance immunostimulatory capabilities.

Discover hidden collaborations