Entity

Time filter

Source Type


Sassi N.,Immuno Rheumatology Research Laboratory | Laadhar L.,Immuno Rheumatology Research Laboratory | Allouche M.,Charles Nicolle Hospital | Achek A.,Immuno Rheumatology Research Laboratory | And 3 more authors.
Journal of Receptors and Signal Transduction | Year: 2014

Context: Osteoarthritis (OA) is an articular disorder leading to the degradation of articular cartilage phenotypical chondrocytes modifications, including the acquisition of a fibroblast-like morphology, decreased expression of collagen type II, and increased expression of fetal collagen type I, metalloproteinase 13 and nitric oxide synthase. This promotes matrix degradation and unsuccessful cartilage repair. WNT signaling constitutes one of the most critical biological processes during cell fate assignment and homeostasis. Objectives: This review aims to give an insight on results from the studies that were interested in the involvement of WNT in OA. Methods: Studies were selected through a pubmed search. Results: Recent genetic data showed that aberration in WNT signaling may be involved in OA. WNT signals are transduced through at least three cascades: the canonical WNT/β-catenin pathway, the WNT/Ca 2+ pathway and the WNT/planar cell polarity pathway. Most of the studies used in-vitro models to elucidate the involvement of WNT in the physiopathology of OA. These studies analyzed the expression pattern of WNT pathway components during OA such as WNT5, WNT7, co-receptor LRP, β-catenin, WNT target genes (c-jun, cyclins) and/or the interaction of these components with the secretion of OA most important markers such as IL-1, collagens, MMPs. Results from these studies are in favor of a deep involvement of the WNT signaling in the physiopathology of OA either by having a protective or a destructive role. Conclusion: Deeper researches may eventually allow scientists to target WNT pathway in order to help develop efficient therapeutic approaches to treat OA. © 2014 Informa Healthcare USA, Inc. All rights reserved: reproduction in whole or part not permitted. Source


Sassi N.,Immuno Rheumatology Research Laboratory | Laadhar L.,Immuno Rheumatology Research Laboratory | Allouche M.,Charles Nicolle Hospital | Zandieh-Doulabi B.,VU University Amsterdam | And 4 more authors.
Biotechnic and Histochemistry | Year: 2014

Osteoarthritis is the most prevalent form of arthritis in the world. Certain signaling pathways, such as the wnt pathway, are involved in cartilage pathology. Osteoarthritic chondrocytes undergo morphological and biochemical changes that lead to chondrocyte de-differentiation. We investigated whether the Wnt pathway is involved in de-differentiation of human articular chondrocytes in vitro. Human articular chondrocytes were cultured for four passages in the presence or absence of IL-1 in monolayer or micromass culture. Changes in cell morphology were monitored by light microscopy. Protein and gene expression of chondrocyte markers and Wnt pathway components were determined by Western blotting and qPCR after culture. After culturing for four passages, chondrocytes exhibited a fibroblast-like morphology. Collagen type II and aggrecan protein and gene expression decreased, while collagen type I, matrix metalloproteinase 13, and nitric oxide synthase expressions increased. Wnt molecule expression profiles changed; Wnt5a protein expression, the Wnt target gene, c-jun, and in Wnt pathway regulator, sFRP4 increased. Treatment with IL-1 caused chondrocyte morphology to become more filament-like. This change in morphology was accompanied by extinction of col II expression and increased col I, MMP13 and eNOS expression. Changes in expression of the Wnt pathway components also were observed. Wnt7a decreased significantly, while Wnt5a, LRP5, β-catenin and c-jun expressions increased. Culture of human articular chondrocytes with or without IL-1 not only induced chondrocyte de-differentiation, but also changed the expression profiles of Wnt components, which suggests that the Wnt pathway is involved in chondrocyte de-differentiation in vitro. © 2013 The Biological Stain Commission. Source


Sassi N.,Immuno Rheumatology Research Laboratory | Laadhar L.,Immuno Rheumatology Research Laboratory | Allouche M.,Charles Nicolle Hospital | Zandieh-Doulabi B.,VU University Amsterdam | And 4 more authors.
Biotechnic and Histochemistry | Year: 2014

Osteoarthritis is the most prevalent form of arthritis in the world and it is becoming a major public health problem. Osteoarthritic chondrocytes undergo morphological and biochemical changes that lead to de-differentiation. The involvement of signaling pathways, such as the Wnt pathway, during cartilage pathology has been reported. Wnt signaling regulates critical biological processes. Wnt signals are transduced through at least three intracellular signaling pathways including the canonical Wnt/β-catenin pathway, the Wnt/Ca2 + pathway and the Wnt/planar cell polarity pathway. We investigated the involvement of the Wnt canonical and non-canonical pathways in human articular chondrocyte de-differentiation in vitro. Human articular chondrocytes were cultured through four passages with no treatment, or with sFRP3 treatment, an inhibitor of Wnt pathways, or with DKK1 treatment, an inhibitor of the canonical pathway. Chondrocyte-secreted markers and Wnt pathway components were analyzed using western blotting and qPCR. Inhibition of the Wnt pathway showed that the canonical Wnt signaling probably is responsible for inhibition of collagen II expression, activation of metalloproteinase 13 expression and regulation of Wnt7a and c-jun expression during chondrocyte de-differentiation in vitro. Our results also suggest that expressions of eNOS, Wnt5a and cyclinE1 are regulated by non-canonical Wnt signaling. © 2013 The Biological Stain Commission. Source

Discover hidden collaborations