Entity

Time filter

Source Type


Esteras C.,Polytechnic University of Valencia | Formisano G.,University of Naples Federico II | Roig C.,Polytechnic University of Valencia | Diaz A.,Polytechnic University of Valencia | And 6 more authors.
Theoretical and Applied Genetics | Year: 2013

Novel sequencing technologies were recently used to generate sequences from multiple melon (Cucumis melo L.) genotypes, enabling the in silico identification of large single nucleotide polymorphism (SNP) collections. In order to optimize the use of these markers, SNP validation and large-scale genotyping are necessary. In this paper, we present the first validated design for a genotyping array with 768 SNPs that are evenly distributed throughout the melon genome. This customized Illumina GoldenGate assay was used to genotype a collection of 74 accessions, representing most of the botanical groups of the species. Of the assayed loci, 91 % were successfully genotyped. The array provided a large number of polymorphic SNPs within and across accessions. This set of SNPs detected high levels of variation in accessions from this crop's center of origin as well as from several other areas of melon diversification. Allele distribution throughout the genome revealed regions that distinguished between the two main groups of cultivated accessions (inodorus and cantalupensis). Population structure analysis showed a subdivision into five subpopulations, reflecting the history of the crop. A considerably low level of LD was detected, which decayed rapidly within a few kilobases. Our results show that the GoldenGate assay can be used successfully for high-throughput SNP genotyping in melon. Since many of the genotyped accessions are currently being used as the parents of breeding populations in various programs, this set of mapped markers could be used for future mapping and breeding efforts. © 2013 Springer-Verlag Berlin Heidelberg. Source


Escribano S.,IMIDRA Madrilean Research Institute for Rural Development | Lazaro A.,IMIDRA Madrilean Research Institute for Rural Development | Cuevas H.E.,University of Wisconsin - Madison | Lopez-Sese A.I.,University of Malaga | And 2 more authors.
Genetic Resources and Crop Evolution | Year: 2011

Melon (Cucumis melo L.) landraces of the Madrid provenance, Spain, have received national distinction for their high fruit quality and sensorial attributes. More specifically, a unique array of Group Inodorus landraces have been continuously cultivated and conserved by farmers in the municipality of Villaconejos since the 19th century. Their genetic relationships to other Group Inodorus and Flexuous melon market classes is not known, and, thus, a study was designed to determine their genetic relationships using 52 simple sequence repeat (SSR) markers, and then make genetic comparisons between these accessions and a previously published "Standard Reference Germplasm Array" (RA) containing Group Inodorus (14 Spanish and one USA), Flexuosus (1 Spanish), and Cantalupensis ( 2 USA) melon accessions. This subset consisted of 15 Spanish Group Inodorus landraces that circumscribed the genetic variation of major Spanish melon market classes (Groups Inodorus and Flexuosus), and USA commercial varieties (Groups Cantalupensis and Inodorus). Based on genetic distances, Villaconejos (Madrid) genotypes differed substantially from RA subset accessions, thus defining their genetic uniqueness. Principal component analysis (PCA) partitioned the accessions examined into four distinct groups revealing that Villaconejos black epidermis melons (landraces 'Largo', 'Largo Negro Escrito' and 'Puchero') were distinctly different from all other accessions examined, as cluster analysis separated Rochet market type Villaconejos' accessions (landraces 'Mochuelo', 'Mochuelo Tradicional' and 'Melón de Villaconejos') from RA of the same market type. Genetic assessment of principal Spanish market classes revealed comparatively low intra-market heterogeneity in Piel de Sapo type accessions and high heterogeneity in Black and Yellow market type accessions. While a relatively high level of genetic introgression was detected between Yellow and Green market types, black epidermis market types were genetically unique. Given the uniqueness and high genetic diversity resident in Villaconejos landraces, this germplasm pool should be considered as a genetic source for broadening the comparatively narrow genetic base of Group Cantalupensis and Inodorus melon market types, especially standard commercial Spanish Group Inodorus market types (e.g., Piel de Sapo, Rochet, and Canari). © 2011 Springer Science+Business Media B.V. Source


Escribano S.,IMIDRA Madrilean Research Institute for Rural Development | Lazaro A.,IMIDRA Madrilean Research Institute for Rural Development
Plant Genetic Resources: Characterisation and Utilisation | Year: 2015

The study of unknown and therefore unexploited genetic material from landraces and wild relatives could be essential to help modern plant breeders to respond to ongoing requirements and new challenges in food production. The present study evaluates the most relevant physicochemical values and nutrient contents of a genetically unique array of traditional melon varieties, cultivated in Spain at least since the 19th century, and compares them with modern melon hybrids available on the market. This research is complemented with an assessment of variety, environment and repetition effects on each trait to determine their stability. Spanish melon landraces displayed extraordinary diversity with respect to juiciness (70.59–95.97 g/100 g water fresh weight), firmness (20.75–149.89 N), soluble solids content (9.57–16.53 °Brix), pH (5.04–6.38), total sugars (360.21–877.36 mg/g dry weight), carotenoids (0.01–2.05 μg/g fresh weight) and ascorbic acid values (7.55–44.33 mg/100 g fresh weight). A subset of these landraces, belonging to Piel de Sapo and Rochet market classes, revealed remarkably superior values of ascorbic acid in comparison with all commercial varieties, doubling ascorbic acid values with respect to their corresponding market class. Furthermore, most of these landraces exhibited high acidity and accumulated high levels of sugars, fulfilling those sensory and physicochemical characteristics that researchers and breeders have spent many years seeking. The possibilities of these landraces to be used in improvement projects are innumerable; they should be surely taken into account in the near future. Copyright © NIAB 2015 Source

Discover hidden collaborations