Time filter

Source Type

Le Touquet – Paris-Plage, France

Vaubaillon J.,IMCCE | Maquet L.,Paris Observatory | Soja R.,University of Stuttgart
Monthly Notices of the Royal Astronomical Society | Year: 2014

Comet C/2013 A1 will make a very close approach with the planet Mars on 2014 October 19. For this event, we compute the density of cometary dust particles around the Mars Express spacecraft, in order to assess the real risk for space probes. We also estimate the zenithal hourly rate (ZHR) and discuss observational opportunities for the resulting Martian meteor shower. We find, for a surface of 2.7 m2, that the Mars Express spacecraft will experience approximately 10 impacts from particles larger than 100 μm in size. The fluence per square metre is found to be 3.5 during the encounter. The equivalent ZHR is computed to be ZHR ≃ 4.75 × 109 h-1, making this event the strongest meteor storm ever predicted.We call this event a 'meteor hurricane', which we define to be a meteor shower with ZHR exceeding 106 h-1. The event will last approximately 5 h in total, and peak around 20:00 UT (Earth UT time). We call for observations of this unique event by all possible means, but also warn operators of Mars-orbiting spacecraft against the risks of impacts from comet particles larger than 100 μm, with impacts speeds of 57.42 km s-1. © 2014 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society. Source

Combot T.,IMCCE
Celestial Mechanics and Dynamical Astronomy | Year: 2012

We prove an integrability criterion and a partial integrability criterion for homogeneous potentials of degree -1 which are invariant by rotation. We then apply it to the proof of the meromorphic non-integrability of the n-body problem with Newtonian interaction in the plane on a surface of equation (H, C) = (H0, C0) with (H0, C0) ≠ (0, 0) where C is the total angular momentum and H the Hamiltonian, in the case where the n masses are equal. Several other cases in the 3-body problem are also proved to be non integrable in the same way, and some examples displaying partial integrability are provided. © 2012 Springer Science+Business Media B.V. Source

Georgakarakos N.,Abu Dhabi University | Eggl S.,IMCCE
Astrophysical Journal | Year: 2015

The analytical framework presented herein fully describes the motion of coplanar systems consisting of a stellar binary and a planet orbiting both stars on orbital as well as secular timescales. Perturbations of the Runge-Lenz vector are used to derive short-period evolution of the system, while octupole secular theory is applied to describe its long-term behavior. A post-Newtonian correction on the stellar orbit is included. The planetary orbit is initially circular and the theory developed here assumes that the planetary eccentricity remains relatively small (e2 < 0.2). Our model is tested against results from numerical integrations of the full equations of motion and is then applied to investigate the dynamical history of some of the circumbinary planetary systems discovered by NASA's Kepler spacecraft. Our results suggest that the formation history of the systems Kepler-34 and Kepler-413 has most likely been different from that of Kepler-16, Kepler-35, Kepler-38 and Kepler-64, since the observed planetary eccentricities for those systems are not compatible with the assumption of initially circular orbits. © 2015. The American Astronomical Society. All rights reserved. Source

Funk B.,University of Vienna | Pilat-Lohinger E.,University of Vienna | Eggl S.,IMCCE
Monthly Notices of the Royal Astronomical Society | Year: 2015

Locating planets in HabitableZones (HZs) around other stars is a growing field in contemporary astronomy. Since a large percentage of all G-M stars in the solar neighbourhood are expected to be part of binary or multiple stellar systems, investigations of whether habitable planets are likely to be discovered in such environments are of prime interest to the scientific community. As current exoplanet statistics predicts that the chances are higher to find new worlds in systems that are already known to have planets, we examine four known extrasolar planetary systems in tight binaries in order to determine their capacity to host additional habitable terrestrial planets. Those systems are Gliese 86, γ Cephei, HD 41004 and HD 196885. In the case of γ Cephei, our results suggest that only the M dwarf companion could host additional potentially habitable worlds. Neither could we identify stable, potentially habitable regions around HD 196885 A. HD 196885 B can be considered a slightly more promising target in the search for Earth-twins. Gliese 86 A turned out to be a very good candidate, assuming that the system's history has not been excessively violent. For HD 41004, we have identified admissible stable orbits for habitable planets, but those strongly depend on the parameters of the system. A more detailed investigation shows that for some initial conditions stable planetary motion is possible in the HZ of HD 41004 A. In spite of the massive companion HD 41004 Bb, we found that HD 41004 B, too, could host additional habitable worlds. © 2015 The Author Published by Oxford University Press on behalf of the Royal Astronomical Society. Source

Combot T.,IMCCE | Koutschan C.,Johannes Kepler University
Journal of Mathematical Physics | Year: 2012

We prove an integrability criterion of order 3 for a homogeneous potential of degree -1 in the plane. Still, this criterion depends on some integer and it is impossible to apply it directly except for families of potentials whose eigenvalues are bounded. To address this issue, we use holonomic and asymptotic computations with error control of this criterion and apply it to the potential of the form V(r, θ) = r-1h(exp (iθ)) with h ∈ C{double-struck}[z], deg h ≤ 3. We then find all meromorphically integrable potentials of this form. © 2012 American Institute of Physics. Source

Discover hidden collaborations