Time filter

Source Type

Kagoshima-shi, Japan

Satou Y.,Kyoto University | Satou Y.,Imperial College London | Utsunomiya A.,Imamura Bun in Hospital | Tanabe J.,Kyoto University | And 3 more authors.
Retrovirology | Year: 2012

Background: HTLV-1 utilizes CD4 T cells as the main host cell and maintains the proviral load via clonal proliferation of infected CD4+ T cells. Infection of CD4+ T cells by HTLV-1 is therefore thought to play a pivotal role in HTLV-1-related pathogenicity, including leukemia/lymphoma of CD4+ T cells and chronic inflammatory diseases. Recently, it has been reported that a proportion of HTLV-1 infected CD4+ T cells express FoxP3, a master molecule of regulatory T cells. However, crucial questions remain unanswered on the relationship between HTLV-1 infection and FoxP3 expression.Results: To investigate the effect of HTLV-1 infection on CD4+ T-cell subsets, we used flow cytometry to analyze the T-cell phenotype and HTLV-1 infection in peripheral mononuclear cells (PBMCs) of four groups of subjects, including 23 HTLV-1-infected asymptomatic carriers (AC), 10 patients with HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP), 10 patients with adult T-cell leukemia (ATL), and 10 healthy donors. The frequency of FoxP3+ cells in CD4+ T cells in AC with high proviral load and patients with HAM/TSP or ATL was higher than that in uninfected individuals. The proviral load was positively correlated with the percentage of CD4+ T cells that were FoxP3+. The CD4+FoxP3+ T cells, themselves, were frequently infected with HTLV-1. We conclude that FoxP3+ T- cells are disproportionately infected with HTLV-1 during chronic infection. We next focused on PBMCs of HAM/TSP patients. The expression levels of the Treg associated molecules CTLA-4 and GITR were decreased in CD4+FoxP3+ T cells. Further we characterized FoxP3+CD4+ T-cell subsets by staining CD45RA and FoxP3, which revealed an increase in CD45RA-FoxP3low non-suppressive T-cells. These findings can reconcile the inflammatory phenotype of HAM/TSP with the observed increase in frequency of FoxP3+ cells. Finally, we analyzed ATL cells and observed not only a high frequency of FoxP3 expression but also wide variation in FoxP3 expression level among individual cases.Conclusions: HTLV-1 infection induces an abnormal frequency and phenotype of FoxP3+CD4+ T cells. © 2012 Satou et al.; licensee BioMed Central Ltd.

Ishii T.,Nagoya City University | Ishii T.,Kyowa Hakko Kirin Co. | Ishida T.,Nagoya City University | Utsunomiya A.,Imamura Bun in Hospital | And 9 more authors.
Clinical Cancer Research | Year: 2010

Purpose: Adult T-cell leukemia/lymphoma (ATLL) has a very poor prognosis. We have developed the humanized defucosylated anti-CC chemokine receptor 4 (CCR4) monoclonal antibody KW-0761 as a next generation immunotherapeutic agent. The first aim of the present study was to evaluate whether the antitumor activity of KW-0761 would likely be sufficient for therapeutic clinical application against ATLL. The second aim was to fully elucidate the mechanism of antibody-dependent cellular cytotoxicity (ADCC) mediated by this defucosylated monoclonal antibody. Experimental Design: The antitumor activity of KW-0761 against ATLL cell lines was evaluated in vitro using human cells and in mice in vivo. Primary ATLL cells from 23 patients were evaluated for susceptibility to autologous ADCC with KW-0761 by two independent methods. Results: KW-0761 showed potent antitumor activity against ATLL cell lines both in vitro and in the ATLL mouse model in vivo. In addition, KW-0761 showed potent antitumor activity mediated by highly enhanced ADCC against primary ATLL cells both in vitro and ex vivo in an autologous setting. The degree of KW-0761 ADCC against primary ATLL cells in an autologous setting was mainly determined by the amount of effector natural killer cells present, but not the amount of the target molecule CCR4 on the ATLL cell surface. Conclusion: KW-0761 should be sufficiently active for therapeutic clinical application for ATLL. In addition, combination treatment strategies that augment natural killer cell activity should be promising for amplifying the effect of KW-0761. In the near future, the actual efficacy of KW-0761 will be established in pivotal clinical trials. ©2010 AACR.

Kannagi M.,Tokyo Medical and Dental University | Hasegawa A.,Tokyo Medical and Dental University | Kinpara S.,Tokyo Medical and Dental University | Shimizu Y.,Tokyo Medical and Dental University | And 2 more authors.
Cancer Science | Year: 2011

Human T-cell leukemia virus type 1 (HTLV-1) is the causative retrovirus of adult T-cell leukemia (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). HTLV-1-specific T-cell responses elicit antitumor and antiviral effects in experimental models, and are considered to be one of the most important determinants of the disease manifestation, since they are activated in HAM/TSP but not in ATL patients. The combination of low T-cell responses and elevated HTLV-1 proviral loads are features of ATL, and are also observed in a subpopulation of HTLV-1 carriers at the asymptomatic stage, suggesting that these features may be underlying risk factors. These risks may potentially be reduced by vaccination to activate HTLV-1-specific T-cell responses. HAM/TSP and ATL patients also differ in their levels of HTLV-1 mRNA expression, which are generally low in vivo but slightly higher in HAM/TSP patients. Our recent study indicated that viral expression in HTLV-1-infected T-cells is suppressed by stromal cells in culture through type-I IFNs. The suppression was reversible after isolation from the stromal cells, mimicking a long-standing puzzling phenomenon in HTLV-1 infection where the viral expression is very low in vivo and rapidly induced in vitro. Collectively, HTLV-1 is controlled by both acquired and innate immunity in vivo: HTLV-1-specific T-cells survey infected cells, and IFNs suppress viral expression. Both effects would contribute to a reduction in viral pathogenesis, although they may potentially influence or conflict with one another. The presence of double control systems for HTLV-1 infection provides a new concept for understanding the pathogenesis of HTLV-1-mediated malignant and inflammatory diseases. © 2011 Japanese Cancer Association.

Nishikawa H.,Osaka University | Maeda Y.,Osaka University | Ishida T.,Nagoya City University | Gnjatic S.,Sloan Kettering Cancer Center | And 11 more authors.
Blood | Year: 2012

Adult T-cell leukemia/lymphoma (ATLL) is an intractable hematologic malignancy caused by human T-lymphotropic virus type 1 (HTLV-1), which infects approximately 20 million people worldwide. Here, we have explored the possible expression of cancer/testis (CT) antigens by ATLL cells, as CT antigens are widely recognized as ideal targets of cancer immunotherapy against solid tumors. A high percentage (87.7%) of ATLL cases (n = 57) expressed CT antigens at the mRNA level: NY-ESO-1 (61.4%), MAGE-A3 (31.6%), and MAGE-A4 (61.4%). CT antigen expression was confirmed by immunohistochemistry. This contrasts with other types of lymphoma or leukemia, which scarcely express these CT antigens. Humoral immune responses, particularly against NY-ESO-1, were detected in 11.6% (5 of 43) and NY-ESO-1-specific CD8+ T-cell responses were observed in 55.6% (5 of 9) of ATLL patients. NY-ESO-1-specific CD8+T cells recognized autologous ATLL cells and produced effector cytokines. Thus, ATLL cells characteristically express CT antigens and therefore vaccination with CT antigens can be an effective immunotherapy of ATLL. © 2012 by The American Society of Hematology.

Sugata K.,Kyoto University | Satou Y.,Kyoto University | Yasunaga J.-I.,Kyoto University | Hara H.,Kyoto University | And 4 more authors.
Blood | Year: 2012

Adult T-cell leukemia (ATL) patients and human T-cell leukemia virus-1 (HTLV-1) infected individuals succumb to opportunistic infections. Cell mediated immunity is impaired, yet the mechanism of this impairment has remained elusive. The HTLV-1 basic leucine zipper factor (HBZ) gene is encoded in the minus strand of the viral DNA and is constitutively expressed in infected cells andATL cells. To test the hypothesis that HBZ contributes to HTLV-1-associated immunodeficiency, we challenged transgenic mice that express the HBZ gene in CD4 T cells (HBZ-Tg mice) with herpes simplex virus type 2 or Listeria monocytogenes, and evaluated cellular immunity to these pathogens. HBZ-Tg mice were more vulnerable to both infections than non-Tg mice. The acquired immune response phase was specifically suppressed, indicating that cellular immunity was impaired in HBZ-Tg mice. In particular, production of IFN-γ by CD4 T cells was suppressed in HBZ-Tg mice. HBZ suppressed transcription from the IFN-γ gene promoter in a CD4 T cell-intrinsic manner by inhibiting nuclear factor of activated T cells and the activator protein 1 signaling pathway. This study shows that HBZ inhibits CD4 T-cell responses by directly interfering with the host cell-signaling pathway, resulting in impaired cell-mediated immunity in vivo. © 2012 by The American Society of Hematology.

Discover hidden collaborations