Time filter

Source Type

Golden Triangle, NC, United States

Onoue S.,University of Shizuoka | Matsui T.,University of Shizuoka | Kuriyama K.,University of Shizuoka | Ogawa K.,University of Shizuoka | And 6 more authors.

The present study was undertaken to develop a respirable sustained-release powder (RP) formulation of long-acting VIP derivative, [Arg 15, 20, 21, Leu17]-VIP-GRR (IK312532), using PLGA nanospheres (NS) with the aim of improving the duration of action. NS formulation of IK312532 (IK312532/NS) was prepared by an emulsion solvent diffusion method in oil, and a mixture of the IK312532/NS and erythritol was jet-milled and mixed with lactose carrier to obtain the IK312532/NS-RP. Physicochemical properties were characterized focusing on appearance, particle size, and drug release, and in vivo pharmacological effects were assessed in antigen-sensitized rats. The IK312532/NS with a diameter of 140 nm showed a biphasic release pattern in distilled water with ca. 20% initial burst for 30 min and a sustained slow release up to ca. 55% for 24 h. Laser diffraction analysis demonstrated that IK312532/NS-RP had fine dispersibility and suitable particle size for inhalation. In antigen-sensitized rats, insufflated IK312532/NS-RP (10 μg of IK312532/rat) could suppress increases of granulocyte recruitment and myeloperoxidase in pulmonary tissue for up to 24 h after antigen challenge, although IK312532-RP at the same dose was less effective with limited duration of action. From these findings, newly prepared IK312532/NS-RP might be of clinical importance in improving duration of action and medication compliance for treatment of airway inflammatory diseases. © 2012 Elsevier Inc. All rights reserved. Source

Onoue S.,University of Shizuoka | Sato H.,University of Shizuoka | Ogawa K.,University of Shizuoka | Kojo Y.,University of Shizuoka | And 6 more authors.
European Journal of Pharmaceutics and Biopharmaceutics

The main purpose of the present study was to develop a novel respirable powder (RP) formulation of cyclosporine A (CsA) using a spray-dried O/W-emulsion (DE) system. DE formulation of CsA (DE/CsA) was prepared by spray-drying a mixture of erythritol and liquid O/W emulsion containing CsA, polyvinylpyrrolidone, and glyceryl monooleate as emulsifying agent. The DE/CsA powders were mixed with lactose carriers to obtain an RP formulation of DE/CsA (DE/CsA-RP), and its physicochemical, pharmacological, and pharmacokinetic properties were evaluated. Spray-dried DE/CsA exhibited significant improvement in dissolution behavior with ca. 4500-fold increase of dissolution rate, and then, nanoemulsified particles were reconstituted with a mean diameter of 317 nm. Laser diffraction analysis on the DE/CsA-RP suggested high dispersion of DE/CsA on the surface of the lactose carrier. Anti-inflammatory properties of the inhaled DE/CsA-RP were characterized in antigen-sensitized asthma/COPD-model rats, in which the DE/CsA-RP was more potent than the RP formulation of physical mixture containing CsA and erythritol in inhibiting inflammatory responses, possibly due to the improved dissolution behavior. Pharmacokinetic studies demonstrated that systemic exposure of CsA after intratracheal administration of the DE/CsA-RP at a pharmacologically effective dose (100 μg-CsA/rat) was 50-fold less than that of the oral CsA dosage form at a toxic dose (10 mg/kg). From these findings, use of inhalable DE formulation of CsA might be a promising approach for the treatment of airway inflammatory diseases with improved pharmacodynamics and lower systemic exposure. © 2011 Elsevier B.V. All rights reserved. Source

Huang R.,U.S. National Institutes of Health | Sakamuru S.,U.S. National Institutes of Health | Martin M.T.,U.S. Environmental Protection Agency | Reif D.M.,U.S. Environmental Protection Agency | And 18 more authors.
Scientific Reports

The U.S. Tox21 program has screened a library of approximately 10,000 (10K) environmental chemicals and drugs in three independent runs for estrogen receptor alpha (ERα) agonist and antagonist activity using two types of ER reporter gene cell lines, one with an endogenous full length ERα (ER-luc; BG1 cell line) and the other with a transfected partial receptor consisting of the ligand binding domain (ER-bla; ERα β-lactamase cell line), in a quantitative high-throughput screening (qHTS) format. The ability of the two assays to correctly identify ERα agonists and antagonists was evaluated using a set of 39 reference compounds with known ERα activity. Although both assays demonstrated adequate (i.e. >80%) predictivity, the ER-luc assay was more sensitive and the ER-bla assay more specific. The qHTS assay results were compared with results from previously published ERα binding assay data and showed >80% consistency. Actives identified from both the ER-bla and ER-luc assays were analyzed for structure-activity relationships (SARs) revealing known and potentially novel ERα active structure classes. The results demonstrate the feasibility of qHTS to identify environmental chemicals with the potential to interact with the ERα signaling pathway and the two different assay formats improve the confidence in correctly identifying these chemicals. Source

Chhabra R.S.,National Health Research Institute | Streicker M.,ILS Inc | Witt K.L.,National Health Research Institute
Environmental and Molecular Mutagenesis

Styrene-acrylonitrile Trimer (SAN Trimer), a by-product in production of acrylonitrile styrene plastics, was identified at a Superfund site in Dover Township, NJ, where childhood cancer incidence rates were elevated for a period of several years. SAN Trimer was therefore tested by the National Toxicology Program in a 2-year perinatal carcinogenicity study in F344/N rats and a bacterial mutagenicity assay; both studies gave negative results. To further characterize its genotoxicity, SAN Trimer was subsequently evaluated in a combined micronucleus (MN)/Comet assay in juvenile male and female F344 rats. SAN Trimer (37.5, 75, 150, or 300 mg/kg/day) was administered by gavage once daily for 4 days. Micronucleated reticulocyte (MN-RET) frequencies in blood were determined by flow cytometry, and DNA damage in blood, liver, and brain cells was assessed using the Comet assay. Highly significant dose-related increases (P < 0.0001) in MN-RET were measured in both male and female rats administered SAN Trimer. The RET population was reduced in high dose male rats, suggesting chemical-related bone marrow toxicity. Results of the Comet assay showed significant, dose-related increases in DNA damage in brain cells of male (P < 0.0074) and female (P < 0.0001) rats; increased levels of DNA damage were also measured in liver cells and leukocytes of treated rats. Chemical-related cytotoxicity was not indicated in any of the tissues examined for DNA damage. The results of this subacute MN/Comet assay indicate induction of significant genetic damage in multiple tissues of weanling F344 male and female rats after oral exposure to SAN Trimer. © 2012 Wiley Periodicals, Inc. Source

Misaka S.,University of Shizuoka | Aoki Y.,University of Shizuoka | Karaki S.-i.,Japan Institute for Environmental Sciences | Kuwahara A.,Japan Institute for Environmental Sciences | And 3 more authors.

Vasoactive intestinal peptide (VIP) exerts immunomodulating and anti-inflammatory activities through its specific receptors, such as VPAC1 and 2 receptors. Previously, a stabilized VIP derivative, [R15,20,21, L17]-VIP-GRR (IK312532), was proposed as a candidate of anti-asthma drug, and a dry powder inhaler system of IK312532 was also developed for inhalation therapy with minimal systemic side-effects. In the present study, the anti-inflammatory properties of IK312532 respirable powder (RP) were characterized in an asthma/COPD-like animal model, with the use of newly developed ovalbumin (OVA)-RP for lung inflammation. Marked inflammatory events in the lung were observed after OVA-RP challenge in rats as evidenced by significant increase of inflammatory biomarkers such as eosinophil peroxidase (EPO), myeloperoxidase (MPO) and lactate dehydrogenase (LDH). However, intratracheal administration of IK312532-RP led to significant attenuation of plasma EPO, MPO and LDH activities, as well as significant reduction of recruited inflammatory cells in BALF, especially macrophages and eosinophils. In the rats pretreated with IK312532-RP, histochemical examinations revealed that the inflammatory cells infiltrating to the lung and the epithelial wall thickness decreased significantly by 85% and 58%, respectively. Thus, inhalable powder formulation of IK312532 exerts its anti-inflammatory activity by suppressing granulocyte recruitment to the lung and epithelial hyperplasia, followed by the reduction of cytotoxic peroxidases. © 2009 Elsevier Inc. All rights reserved. Source

Discover hidden collaborations