Dhanbād, India
Dhanbād, India

Time filter

Source Type

Kannan S.,IIT ISM | Senthil Kumaran S.,RVS Educational Trusts Group of Institutions | Kumaraswamidhas L.A.,Indian School of Mines
Journal of Alloys and Compounds | Year: 2016

In this present study, Tungsten inert gas (TIG) welding was applied to weld the dissimilar materials and authenticate the mechanical and metallurgical properties of tube to tube plate made up of commercial aluminium and Al 2025 respectively using an Zirconiated tungsten electrode along with filler material aluminium ER 2219. In total, twenty five pieces has been subjected to compression strength and hardness value to evaluate the optimal joint strength. The three optimization technique has been used in this experiment. Taguchi L25 orthogonal array is used to identify the most influencing process parameter which affects the joint strength. ANOVA method is measured for both compression strength and hardness to calculate the percentage of contribution for each process parameter. Genetic algorithm is used to validate the results obtained from the both experimental value and optimization value. The micro structural study is depicted the welding joints characterization in between tube to tube plate joints. The radiograph test is conducted to prove the welds are non-defective and no flaws are found during the welding process. The mechanical property of compression strength and hardness has been measured to obtain the optimal joint strength of the welded sample was about 174.846 MPa and 131.364 Hv respectively. © 2016 Elsevier B.V. All rights reserved.


Das S.K.,IIT ISM | Tripathi S.,IIT ISM
Wireless Networks | Year: 2016

Designing an energy efficient routing protocol is one of the main issue of Mobile Ad-hoc Networks (MANETs). It is challenging task to provide energy efficient routes because MANET is dynamic and mobile nodes are fitted with limited capacity of batteries. The high mobility of nodes results in quick changes in the routes, thus requiring some mechanism for determining efficient routes. In this paper, an Intelligent Energy-aware Efficient Routing protocol for MANET (IE2R) is proposed. In IE2R, Multi Criteria Decision Making (MCDM) technique is used based on entropy and Preference Ranking Organization METHod for Enrichment of Evaluations-II (PROMETHEE-II) method to determine efficient route. MCDM technique combines with an intelligent method, namely, Intuitionistic Fuzzy Soft Set (IFSS) which reduces uncertainty related to the mobile node and offers energy efficient route. The proposed protocol is simulated using the NS-2 simulator. The performance of the proposed protocol is compared with the existing routing protocols, and the results obtained outperforms existing protocols in terms of several network metrics. © 2016 Springer Science+Business Media New York


Mathan Kumar N.,IIT ISM | Senthil Kumaran S.,RVS Educational Trusts Group of Institutions | Kumaraswamidhas L.A.,IIT ISM
Journal of Alloys and Compounds | Year: 2015

Aluminum 2618 matrix composites (AMCs) reinforced by AlN, Si3N4 & ZrB2 particles were fabricated from Al2618- x wt% AlN, Si3N4, ZrB2 (x = 0, 2, 4, 6, 8) by stir casting. In ZrB2 particles were fabricated by in-situ reaction from mixtures of K2ZrF6 & KBF4. The mechanical properties of the composites were increased with respect to the percentage of weight. The corrosion behavior of metal matrix composites (MMCs) is strictly linked with the presence of heterogeneities such as reinforcement phase, micro crevices, porosity, secondary phase precipitates, and interaction products. The present work is investigated relating to the corrosion resistance of Aluminum (2618) metal matrix composites (AMCs) reinforced with AlN, Si3N4 & ZrB2 was investigated by electro chemical studies such as polarization study and AC impedance spectra. The above materials are immersed in an aquaise 3.5% Sodium Chloride (Nacl) solution corrosion parameters such as corrosion potential (Ecorr), corrosion current (Icorr), Linear Polarization Resistance (LPR), charge transfer resistance (Rt), Double layer capacitance (Cdl) will be evaluated from this and the most corrosion resistance material is determined. Finally the results are obtained by the polarization studies and AC impedance spectra which leads to the conclusion that the corrosion resistance of 0% of Al2618 alloy has a low corrosion resistance and the composites have a high corrosion resistance. The corrosion resistance is gradually increased with respect to the Wt% of composites (2%, 4%, 6%, 8%). © 2015 Elsevier B.V. All rights reserved.


Mathan Kumar N.,IIT ISM | Senthil Kumaran S.,RVS Educational Trusts Group of Institutions | Kumaraswamidhas L.A.,IIT ISM
Journal of Alloys and Compounds | Year: 2016

In this study, the Al 2618 aluminium alloy is reinforced with Si3N4 (Silicon Nitride), AlN (Aluminium Nitride) & ZrB2 (Zirconium Boride) in wt. % of (0,2,4,6,8) by stir casting process. The tribological and mechanical properties of these composites particles were investigated under dry sliding conditions. The mechanical properties of the composites is studied by conducting various test like hardness test, tensile test and compression test to understand the relationship between the wt. % of reinforcement and the matrix metal. This is followed by the micro structural study to examine the bond formation and effect of grain size reduction due to the addition of reinforcement. The Taguchi L25 orthogonal array is used to optimize the process parameters to obtain minimum wear rate and the analysis of variance (ANOVA) was used to investigate the influence of parameter affecting the wear rate. The Scanning Electron Microscope (SEM) analysis is carried out to understand the wear mechanism of worn out surfaces and the wear debris. The manipulate of the wt. % of reinforcements and applied load on the wear rate, wear resistance, specific wear rate, coefficient of wear rate and the mass loss were premeditated using the pin-on-disk method. © 2016 Elsevier B.V.


Seth G.S.,IIT ISM | Mandal P.K.,IIT ISM | Chamkha A.J.,Prince Mohammad Bin Fahd University
Frontiers in Heat and Mass Transfer | Year: 2016

A theoretical investigation of unsteady hydromagnetic free convection flow with heat and mass transfer of a viscous, incompressible, electrically conducting, optically thick radiating and chemically reactive fluid near an impulsively moving vertical plate with ramped heat flux through fluid saturated porous medium in the presence of inclined magnetic field is carried out. Exact solutions of the governing equations for fluid velocity, fluid temperature and species concentration are obtained by Laplace transform technique. The expressions for the skin-friction, rate of mass transfer at the plate and plate temperature are also derived. Numerical results for fluid velocity, fluid temperature and species concentration are displayed graphically whereas those of skin-friction, rate of mass transfer at the plate and plate temperature are presented in tabular form for various values of pertinent flow parameters. It is found that fluid flow is accelerated/retarded by varying the angle of inclination of magnetic field. © 2016, Global Digital Central. All rights reserved.


Kumar N.M.,IIT ISM | Kumaran S.S.,RVS Educational Trusts Group of Institutions | Kumaraswamidhas L.A.,IIT ISM
Journal of Alloys and Compounds | Year: 2015

Abstract It is submitted that new approach is tried to find out what would be the outcome if Aluminum 2618 reinforced by AlN (Aluminum Nitride), Si3N4 (Silicon Nitride) & ZrB2(Zirconium Boride) particles were fabricated in Wt % (x = 0,2,4,6,8) by stir casting method. If the wt% is increased, the mechanical properties of the composite will proportionally increase. There will be no other promising technique than Electrical Discharge Machining (EDM) for machining metal matrix composites when they were conducted on the Aluminum 2618 composite work piece using a copper electrode in an EDM machining. It becomes very vital in the field machines and mechanism to find out Current(I), Pulse on time(TON), Pulse off time (TOFF) on Metal Removal Rate (MRR),Tool Wear Rate(TWR) on the machining of hybrid Al2618 metal matrix composites. Taghuchi's design of experiment was used to analyse the machining characteristics of hybrid composites. To effect the parameters like current (I), Pulse on time(TON), Pulse off time (TOFF) has been chosen as the input parameters of this work. Machining results go to show that Al2618 composites have improved mechanical properties and as a result of Material Removal Rate (MRR) and Tool Wear Rate (TWR) are reduced. Hence ANOVA (Analysis of Variance) and signal to Noise ratio are used to determine the influence of input parameters on the Material Removal Rate and Tool Wear Rate (TWR). © 2015 Elsevier B.V.


The objective of the present study is to estimate hydraulic load, induced stress and factor of safety of the Savonius hydrokinetic turbine when operating under free stream velocity of 0.3 m/s to 4 m/s at rotor angle 0° to 360°. Hydraulic load evaluated from CFD analysis, whereas the induced stress computed from FEM analysis based on the computed hydraulic load through CFD in ANSYS 14. The effects of deflector and duct augmentation technique on the hydraulic load and induced stress have also been investigated. The maximum hydraulic load and von-Mises stress on rotor are found as 0.57 Mpa and 153.41 Mpa respectively in case of duct with single deflector augmentation techniques at rotor angle 0°, 180° and 360° at 4 m/s free stream velocity. In Savonius rotor with augmentation techniques, at higher free stream velocity the factor of safety reached very low, somewhat equal or less than minimum specified limit of failure. Computation results show that front area of shaft rotor from inlet side experiences zone of high von-Mises stress and has minimum factor of safety that leads to chances of fatigue crack, when applied for a free stream velocity greater than 2 m/s. © 2016 Elsevier Ltd


Kumar N.M.,IIT ISM | Senthil Kumaran S.,RVS Educational Trusts Group of Institutions | Kumaraswamidhas L.A.,IIT ISM
Journal of Alloys and Compounds | Year: 2016

In this investigation, Aluminium Matrix Composite (AMC) has implicated in this paper. The Aluminium 2618 alloy is taken as the Matrix material along with Reinforcement particles such as Silicon Nitride (Si3N4), Aluminium Nitride (ALN) and Zirconium Boride (Zrb2). It is well mixed with Al 2618 alloy in various weight percentages (Wt. % = 0,2,4,6,8) by stir casting method. The Mechanical properties like hardness, tensile strength, compressive Strength for Al 2618 composites were increased along with increasing Wt. % of reinforcement. A new attempt has been tried to optimize the parameters to obtain minimum value in Material Removal Rate (MRR), Tool Wear Rate (TWR) and Depth (mm) through Electrical Discharge machining process (EDM) at elevated temperatures. The input process parameters are taken for the machining is Temperature (°C), Pulse ON (μS), Pulse OFF (μS) and Current (Amps). Taguchi L25orthogonal array was used to identify the optimize parameter is MRR, TWR and Depth. Each parameters contribution in percentage was calculated by the Analysis of Variance (ANOVA). The exact input and output parameters were examined with help of Genetic Algorithm (GA). © 2015 Elsevier B.V.


Kannan S.,IIT ISM | Kumaran S.S.,Rvs Educational Trusts Group Of Institutions | Kumaraswamidhas L.A.,IIT ISM
Journal of Mechanical Science and Technology | Year: 2016

The aim of the present work is to optimize the Friction welding of tube to tube plate using an external tool (FWTPET) with clearance fit of commercial aluminum tube to Al 2025 tube plate using an external tool. Conventional frictional welding is suitable to weld only symmetrical joints either tube to tube or rod to rod but in this research with the help of external tool, the welding has been done by unsymmetrical shape of tube to tube plate also. In this investigation, the various welding parameters such as tool rotating speed (rpm), projection of tube (mm) and depth of cut (mm) are determined according to the Taguchi L9 orthogonal array. The two conditions were considered in this process to examine this experiment; where condition 1 is flat plate with plain tube Without holes [WOH] on the circumference of the surface and condition 2 is flat plate with plane tube has holes on its circumference of the surface With holes [WH]. Taguchi L9 orthogonal array was utilized to find the most significant control factors which will yield better joint strength. Besides, the most influential process parameter has been determined using statistical Analysis of variance (ANOVA). Finally, the comparison of each result has been done for conditions by means percentage of contribution and regression analysis. The general regression equation is formulated and better strength is obtained and it is validated by means of confirmation test. It was observed that value of optimal welded joint strength for both tube without holes and tube with holes are to be 319.485 MPa and 264.825 MPa, respectively. © 2016, The Korean Society of Mechanical Engineers and Springer-Verlag Berlin Heidelberg.


Drug-resistant bacteria are an increasingly serious threat to global public health. In particular, infections from multidrug-resistant (MDR) Gram-positive bacteria (i.e. Staphylococcus aureus) are growing global health concerns. In this work, we report the first use of nanoscale metal-organic frameworks (NMOFs) coencapsulating an antibiotic (vancomycin) and targeting ligand (folic acid) in one pot to enhance therapeutic efficacy against MDR S. aureus. Zeolitic imidazolate framework (ZIF-8) NMOFs, which have globular morphologies coencapsulating vancomycin and folic acid, are characterized by transmission electron microscopy, field-emission scanning electron microscopy, powder x-ray diffraction, ulltraviolet-visible spectroscopy, and dynamic light-scattering techniques. We determined that the presence of folic acid on the surface of the NMOFs is significant in the sense of effective uptake by MDR S. aureus through endocytosis. The functionalized NMOFs transport vancomycin across the cell wall of MDR S. aureus and enhance antibacterial activity, which has been confirmed from studies of the minimum inhibitory concentration, minimum bactericidal concentration, cytotoxicity of bacterial cells, and generation of reactive oxygen species. This work shows that functionalized NMOFs hold great promise for effective treatment of MDR S. aureus.

Loading IIT ISM collaborators
Loading IIT ISM collaborators