Time filter

Source Type

Barcelona, Spain

Schneeberger M.,Institute dinvestigacions Biomediques August Pi i Sunyer IDIBAPS | Schneeberger M.,University of Barcelona | Schneeberger M.,Research Center Biomedica En Red Of Diabetes fermedades Metabolicas Asociadas | Dietrich M.O.,Yale University | And 31 more authors.
Cell | Year: 2013

Summary Mitofusin 2 (MFN2) plays critical roles in both mitochondrial fusion and the establishment of mitochondria-endoplasmic reticulum (ER) interactions. Hypothalamic ER stress has emerged as a causative factor for the development of leptin resistance, but the underlying mechanisms are largely unknown. Here, we show that mitochondria-ER contacts in anorexigenic pro-opiomelanocortin (POMC) neurons in the hypothalamus are decreased in diet-induced obesity. POMC-specific ablation of Mfn2 resulted in loss of mitochondria-ER contacts, defective POMC processing, ER stress-induced leptin resistance, hyperphagia, reduced energy expenditure, and obesity. Pharmacological relieve of hypothalamic ER stress reversed these metabolic alterations. Our data establish MFN2 in POMC neurons as an essential regulator of systemic energy balance by fine-tuning the mitochondrial-ER axis homeostasis and function. This previously unrecognized role for MFN2 argues for a crucial involvement in mediating ER stress-induced leptin resistance. © 2013 Elsevier Inc. Source

Artigas F.,IIBB CSIC IDIBAPS | Artigas F.,Research Center Biomedica En Red Of Salud Mental Cibersam
Pharmacology and Therapeutics | Year: 2013

The neurotransmitter serotonin (5-hdroxytryptamine; 5-HT) has been implicated in the pathophysiology and treatment of major depression since the serendipitous discovery of antidepressant drugs in the 1950s. However, despite the generalised use of serotonin-enhancing drugs, such as the selective serotonin reuptake inhibitors (SSRIs) and the dual serotonin and norepinephrine reuptake inhibitors (SNRIs), the exact neurobiological mechanisms involved in the therapeutic action of these drugs are poorly understood. Better knowledge of these mechanisms may help to identify new therapeutic targets and to overcome the two main limitations of current treatments: reduced efficacy and slowness of action. Here I review the preclinical and clinical evidence supporting the involvement of different 5-HT receptors in the therapeutic action of antidepressant drugs. Presynaptic 5-HT1A and 5-HT1B autoreceptors play a major detrimental role in antidepressant treatments, as their activation by the excess of the active (extracellular) 5-HT fraction produced by serotonin transporter (SERT) blockade reduces presynaptic serotonergic function. Conversely, stimulation of postsynaptic 5-HT1A receptors in corticolimbic networks appears beneficial for the antidepressant action. The 5-HT2 receptor family is also involved as 5-HT 2A/2C receptor blockade improves the antidepressant action of SSRIs, and recent data suggest that 5-HT2B receptor activation enhances serotonergic activity. Less is known from the rest of postsynaptic 5-HT receptors. However, 5-HT3 receptor blockade augments the 5-HT increase evoked by SERT inhibition, and 5-HT4 receptor activation may have antidepressant effects on its own. Finally, blockade of 5-HT6 and 5-HT7 receptors appears also to augment the antidepressant effects of SERT inhibition. © 2012 Elsevier Inc. Source

European Journal of Inflammation | Year: 2014

Neutrophil apoptosis is delayed in medical conditions associated to anoxia or hypoxia, prolonging tissue destruction and fostering the inflammation. Hypoxia Inducible Factor-1α (HIF-1α), is a main regulator of delayed neutrophil apoptosis but the mechanism of action is poorly characterized. Neutrophil gelatinase-associated lipocalin (24p3) participates actively in iron metabolism and the regulation of iron-responsive genes. Recently, a connection has been described between HIF-1α and 24p3. The purpose of the present study was to determine whether constitutive apoptosis in neutrophils requires 24p3 and whether HIF-1α represses 24p3 affecting cell death iron intracellular levels. To this end we used in vivo ischemic models and anoxic approaches based on the reactivation of the delayed apoptosis. We found that the stabilization of HIF-α during anoxic periods provoked a delay in neutrophil apoptosis through decrease of 24p3 expression and intracellular iron content. The ischemia drastically inhibited the synthesis of 24p3 in circulating neutrophils, increasing the tissue damage. Reactivation of neutrophil apoptosis with opsonized E.coli induced increases in intracellular levels of iron and 24p3. In conclusion, contrary to other cell types, constitutive apoptosis in neutrophils requires 24p3. During hypoxia or ischemia, HIF-1α stabilization represses 24p3 expression, consequently iron levels are depleted and neutrophil apoptosis is delayed. Copyright © by BIOLIFE, s.a.s. Source

Dalmases M.,Laboratori Of La Son | Dalmases M.,CIBER ISCIII | Torres M.,Laboratori Of La Son | Torres M.,CIBER ISCIII | And 14 more authors.
Sleep | Year: 2014

Study Objectives: To test the hypotheses that brain oxygen partial pressure (PtO2) in response to obstructive apneas changes with age and that it might lead to different levels of cerebral tissue oxidative stress. Design: Prospective controlled animal study. Setting: University laboratory. Participants: Sixty-four male Wistar rats: 32 young (3 mo old) and 32 aged (18 mo). Interventions: Protocol 1: Twenty-four animals were subjected to obstructive apneas (50 apneas/h, lasting 15 sec each) or to sham procedure for 50 min. Protocol 2: Forty rats were subjected to obstructive apneas or sham procedure for 4 h. Measurements and Results: Protocol 1: Real-time PtO2 measurements were performed using a fast-response oxygen microelectrode. During successive apneas cerebral cortex PtO2 presented a different pattern in the two age groups; there was a fast increase in young rats, whereas it remained without significant changes between the beginning and the end of the protocol in the aged group. Protocol 2: Brain oxidative stress assessed by lipid peroxidation increased after apneas in young rats (1.34 ± 0.17 nmol/mg of protein) compared to old ones (0.63 ± 0.03 nmol/mg), where a higher expression of antioxidant enzymes was observed. Conclusions: The results suggest that brain oxidative stress in aged rats is lower than in young rats in response to recurrent apneas, mimicking obstructive sleep apnea. This could be due to the different PtO2 response observed between age groups and the increased antioxidant expression in aged rats. Source

Schneeberger M.,Institute dinvestigacions Biomediques August Pi i Sunyer IDIBAPS | Schneeberger M.,University of Barcelona | Schneeberger M.,CIBER ISCIII | Gomez-Valades A.G.,Institute dinvestigacions Biomediques August Pi i Sunyer IDIBAPS | And 27 more authors.
Cell Reports | Year: 2015

Alterations in ER homeostasis have been implicated in the pathophysiology of obesity and type-2 diabetes (T2D). Acute ER stress induction in the hypothalamus produces glucose metabolism perturbations. However, the neurobiological basis linking hypothalamic ER stress with abnormal glucose metabolism remains unknown. Here, we report that genetic and induced models of hypothalamic ER stress are associated with alterations in systemic glucose homeostasis due to increased gluconeogenesis (GNG) independent of body weight changes. Defective alpha melanocyte-stimulating hormone (α-MSH) production underlies this metabolic phenotype, as pharmacological strategies aimed at rescuing hypothalamic α-MSH content reversed this phenotype at metabolic and molecular level. Collectively, our results posit defective α-MSH processing as a fundamental mediator of enhanced GNG in the context of hypothalamic ER stress and establish α-MSH deficiency in proopiomelanocortin (POMC) neurons as a potential contributor to the pathophysiology of T2D. © 2015 The Authors. Source

Discover hidden collaborations