II VI Incorporated

Bound Brook, NJ, United States

II VI Incorporated

Bound Brook, NJ, United States
SEARCH FILTERS
Time filter
Source Type

Patent
II VI Incorporated | Date: 2016-01-29

A two-dimensional (2D) optical fiber array component takes the form of a (relatively inexpensive) fiber guide block that is mated with a precision output element. The guide block and output element are both formed to include a 2D array of through-holes that exhibit a predetermined pitch. The holes formed in the guide block are relatively larger than those in precision output element. A loading tool is used to hold a 1N array of fibers in a fixed position that exhibits the desired pitch. The loaded tool (holding the pre-aligned 1N array of fibers) is then inserted through the aligned combination of the guide block and output element, and the fiber array is bonded to the guide block. The tool is then removed, re-loaded, and the process continued until all of the 1N fiber arrays are in place. By virtue of using a precision tool to load the fibers, the guide block does not have to be formed to exhibit precise through-hole dimensions, allowing for a relatively inexpensive guide block to be used.


Patent
Ii Vi Incorporated | Date: 2017-03-13

A multiport optical switch is used to controllably select a specific incoming optical signal that is to be processed by an associated optical channel monitor (OCM). The OCM includes a tunable optical filter and photodetector arrangement, and is configured to measure the optical spectrum of the incoming optical signal and extract information associated with the various optical channels forming the incoming optical signal (i.e., power, wavelength, OSNR, etc., per channel in the signal). The OCM also includes a processor that generates a pair of output control signals, a first signal to control the wavelength scanning process of the tunable optical filter and a second signal to control the setting of the multiport optical switch. The second signal may also be used to perform detuning of a selected input of the multiport optical switch, providing the ability to adjust the power level of an input signal prior to entering the OCM.


Patent
II VI Incorporated | Date: 2016-07-21

A micro splice protector for a fusion connection between a pair of optical fibers takes the form of a cylindrical sleeve of dimensions similar to that of the fusion splice itself, with an epoxy material used to encase the fusion splice within the sleeve. The sleeve is formed to exhibit an inner diameter only slightly greater than the outer diameter of the optical fibers, with the length of the sleeve typically formed to be only slightly longer than the stripped end terminations of the pair of fibers being spliced together. The cylindrical sleeve is formed of a rigid, but lightweight, material (e.g., stainless steel, fused silica) and an epoxy material is injected into the configuration to fill any gaps between the fusion connection and the inner surface of the sleeve. The result is relatively stiff fusion splice protector that is extremely small in size and well-suited for use in optical component packages where space is at a minimum.


Patent
CAS Institute of Chemistry and II VI Incorporated | Date: 2016-09-12

Disclosed is method of preparing a selenium carbon composite material and a use of the selenium carbon composite material in a cathode of a lithium selenium secondary battery. A battery formed with a cathode of the disclosed selenium carbon composite material has high energy density and stable electrochemical performance. The disclosed selenium carbon composite material can effectively shorten the migration distance of lithium ions during charging and discharging of the battery and improve conductivity and utilization of selenium after compounding carbon and selenium. Multiple batteries formed with cathodes of the disclosed selenium carbon composite material can be assembled into a lithium selenium pouch-cell battery having stable electrochemical performance and high energy density.


Patent
II VI Incorporated | Date: 2017-02-03

An optical amplifier assembly for determining a parameter of an optical fibre configured to amplify an optical signal being propagated therethrough, the assembly comprising: at least one amplifier pump light source assembly configured to transmit light at a plurality of wavelengths into the optical fibre; a receiver configured to receive light that has propagated through at least part of the optical fibre; and a processor configured to determine the parameter of the optical fibre based on the received light.


Patent
II VI Incorporated | Date: 2016-06-07

A housing used for electronic devices includes a structural frame element formed of a metal matrix composite (MMC) for providing improved stiffness over other materials currently in use. The MMC is a metal matrix (formed of a material such as aluminum), with a reinforcing material (such as a glass fiber or ceramic) dispersed within the metal matrix. The composition of the reinforcing material, as well as the ratio of reinforcing material to metal, define the stiffness (resistance to bending) and/or strength (resistance to breaking) achieved, and various compositions may be used for different housings, depending on the use of the electronic device. The element may be configured as a structural frame member, or may be embedded within another material forming the structural frame element. In another embodiment, the MMC may be used to form various components of the complete housing, including the enclosure itself.


Patent
II VI Incorporated | Date: 2016-02-11

A densely-spaced single-emitter laser diode configuration is created, by using a laser bar (or similar array configuration) attached to a submount component of a size sufficient to adequately support the enter laser structure. The surface of the submount component upon which the laser structure is attached is metallized and used to form the individual electrical contacts to the laser diodes within the integrated laser structure. Once attached to each other, the laser structure is singulated by creating vertical separations between adjacent light emission areas. The submount metallization is similarly segmented, creating separate electrodes that are used to individually energize their associated laser diodes.


Patent
II VI Incorporated | Date: 2016-03-16

A fiber-based optical amplifier is assembled in a compact configuration by utilizing a flexible substrate to support the amplifying fiber as flat coils that are spun onto the substrate. The supporting structure for the amplifying fiber is configured to define the minimal acceptable bend radius for the fiber, as well as the maximum diameter that fits within the overall dimensions of the amplifier package. A pressure-sensitive adhesive coating is applied to the flexible substrate to hold the fiber in place. By using a flexible material with an acceptable insulative quality (such as a polyimide), further compactness in the final assembly is achieved by locating the electronics in a space underneath the fiber enclosure.


Patent
II VI Incorporated | Date: 2016-03-17

An optical amplifier module is configured as a multi-stage free-space optics arrangement, including at least an input stage and an output stage. The actual amplification is provided by a separate fiber-based component coupled to the module. A propagating optical input signal and pump light are provided to the input stage, with the amplified optical signal exiting the output stage. The necessary operations performed on the signal within each stage are provided by directing free-space beams through discrete optical components. The utilization of discrete optical components and free-space beams significantly reduces the number of fiber splices and other types of coupling connections required in prior art amplifier modules, allowing for an automated process to create a pluggable optical amplifier module of small form factor proportions.


Patent
II VI Incorporated | Date: 2016-03-19

Optical modules as used in various types of communication systems are formed to include a flexible substrate to support various optical, electronic, and opto-electronic module components in a manner that can accommodate various packaging constraints. The flexible substrate is formed of a polyimide film is known to exhibit excellent electrical isolation properties, even though the films are generally relatively thin (on the order of 10-100 ms, in most cases). The flexible polyimide film is sized to accommodate the constraints of a given package footprint; more particularly, sized to fit an open floor area within package, allowing for a populated film to be placed around various other fixed-in-place elements . The polyimide film is easily cut and trimmed to exhibit whatever topology is convenient, while providing enough surface area to support the affixed components and associated optical fiber traces.

Loading II VI Incorporated collaborators
Loading II VI Incorporated collaborators