Igenica Biotherapeutics

Burlingame, CA, United States

Igenica Biotherapeutics

Burlingame, CA, United States

Time filter

Source Type

CASTRES, Frankrijk--(BUSINESS WIRE)--Pierre Fabre, de op één na grootste Franse particuliere farmaceutische groep, heeft vandaag de ondertekening van een definitieve koopovereenkomst aangekondigd om diverse activa te verwerven van het biotechnologisch bedrijf Igenica Biotherapeutics, gevestigd in Burlingame, Californië, Verenigde Staten. De overeenkomst omvat innovatieve immunotherapieën die gericht zijn op immuniteitscontrolepunten die de resistentie tegen bestaande immunotherapieën kunnen keren. Het meest geavanceerde actief is momenteel in een preklinische fase en wordt naar verwachting in de komende 2 tot 3 jaar toegediend aan patiënten. De overeenkomst omvat ook een reeks vroegtijdige ontdekkingsdoelstellingen. “Deze overeenkomst is in lijn met recente samenwerkingen ondertekend door Pierre Fabre met biotechnologiebedrijven en academische laboratoria op het gebied van oncologie en dermatologie en bevestigt onze Research & Development-dynamiek via externe partners” aldus Laurent Audoly, hoofd van Pierre Fabre Pharmaceuticals R&D. Over Igenica Biotherapeutics Igenica Biotherapeutics is gericht op de ontdekking en ontwikkeling van antilichamen op het gebied van immuun-oncologie en antilichaam-drugconjugaten (ADC's) voor de behandeling van kanker. Dit bedrijf ondersteunt het spectrum van ADC-ontwikkeling volledig, van een klinisch relevante benadering ten aanzien van het doel en de ontdekking van functionele antilichamen, tot de creatie van ADC's, wat de ontwikkeling en de levering van effectieve therapieën aan patiënten versnelt. Robert Schreiber, Ph.D* was in 2009 mede-oprichter van Igenica. Het bedrijf wordt geleid door een bewezen team van leiders die succes hebben getoond op het gebied van de ontdekking van antilichamen, klinische ontwikkeling en commercialisering. *(Bijzonder hoogleraar Pathologie en Immunologie, hoogleraar Moleculaire Microbiologie, Washington University School of Medicine) Over Pierre Fabre Pierre Fabre is een Frans particulier farmaceutisch en dermo-cosmeticabedrijf dat in 1962 opgericht werd door dhr. Pierre Fabre. De omzet van het bedrijf bedroeg ruim 2,28 miljard euro in 2016, verspreid over 130 landen. Het bedrijf is gestructureerd rond twee divisies: Farmaceutische producten (voorgeschreven medicijnen, consumentengezondheidszorg) en Dermo-cosmetica (waaronder het in Europa en Azië toonaangevende merk Eau Thermale Avène). Pierre Fabre heeft wereldwijd ongeveer 13.000 mensen in dienst en heeft dohterondernemingen in 47 landen. In 2016 wees het bedrijf 14% van de farmaceutische verkoop toe aan R&D, met een focus op 4 therapeutische gebieden: oncologie, dermatologie, CNS en consumentengezondheidszorg. Via de controlerende onderneming Pierre Fabre Participations van de groep is Pierre Fabre voor 86% in handen van de Pierre Fabre Foundation, een sinds 1999 erkende organisatie van openbaar belang. Tot 8,2% van de resterende aandelen zijn in handen van de werknemers van de onderneming en het resterende saldo wordt gehouden als ingekochte eigen aandelen. Deze bekendmaking is officieel geldend in de originele brontaal. Vertalingen zijn slechts als leeshulp bedoeld en moeten worden vergeleken met de tekst in de brontaal, die als enige rechtsgeldig is.


CASTRES, France--(BUSINESS WIRE)--Pierre Fabre, the 2nd largest French private Pharmaceutical group, today announced the signature of a definitive purchase agreement to acquire several assets from the biotechnology company Igenica Biotherapeutics, based in Burlingame, California, USA. The agreement includes innovative immunotherapies targeting immune checkpoints that may reverse the resistance to existing immuno therapies. The most advanced asset is currently at preclinical stage and is expected to be administered to patients in the coming 2 to 3 years. The agreement also comprises a series of early discovery targets. “This agreement is in line with recent collaborations signed by Pierre Fabre with biotechnology companies and academic laboratories in the fields of oncology and dermatology and confirms our Research & Development dynamic through external partners” said Laurent Audoly, Head of Pierre Fabre Pharmaceuticals R&D. Frédéric Duchesne, Pharmaceutical Division Chief Executive Officer at Pierre Fabre added, “Pierre Fabre’s know-how in oncology is based on more than 30 years of experience. We have two recognized research and development centers with dedicated teams that work closely together to developing medicines for patients living with cancer. This new deal reinforces our position to participate in the revolution of targeted biotherapies and reinforce our commitment to bring substantial value to patients”. Under the terms of the agreement, Pierre Fabre has acquired the full property of the assets. The financial terms of the agreement are not disclosed. “We are very pleased that Pierre Fabre will clinically develop Igenica’s most advanced immune oncology asset for patients suffering from cancer ”said Edward van der Horst, Senior Director of Igenica’s Preclinical Drug Development. About Igenica Biotherapeutics Igenica Biotherapeutics is focused on the discovery and development of antibodies in the field of immune-oncology and antibody-drug conjugates (ADCs) for the treatment of cancer. This company fully powers the ADC development spectrum from a clinically relevant approach to target and functional antibody discovery to ADC creation, accelerating development and the delivery of effective therapies to patients. Co-founded in 2009 by Robert Schreiber, Ph.D*. Igenica is led by a proven team of leaders that have demonstrated success in antibody drug discovery, clinical development and commercialization. *(Alumni endowed Professor of Pathology and Immunology, Professor of Molecular Microbiology, Washington University School of Medicine) About Pierre Fabre Pierre Fabre is a French private pharmaceuticals and dermo-cosmetics company founded in 1962 by Mr. Pierre Fabre. Its turnover reached over 2.28 billion Euros in 2016, spread over 130 countries. The company is structured around two divisions: Pharmaceuticals (prescription drugs, consumer health care) and Dermo-cosmetics (including the Europe and Asia market-leader Eau Thermale Avène brand). Pierre Fabre employs some 13,000 people worldwide and owns subsidiaries in 47 countries. In 2016, the company allocated 14% of its pharmaceuticals sales to R&D with a focus on 4 therapeutic areas: oncology, dermatology, CNS and consumer health care. Pierre Fabre Laboratories have always developed durable and valuable scientific partnerships with innovators from public research institutions (CRNS, Inserm...), faculties and universities (Ecole Polytechnique de Lausanne, Université de Saclay...), international pharmaceutical laboratories (Allergan, Abbvie, Maruho...) and biotech companies (Array BioPharma, AbCheck, Cellectar...). Through the Group’s controlling company Pierre Fabre Participations, Pierre Fabre is 86% owned by the Pierre Fabre Foundation, a recognized public-interest organization since 1999. Up to 8.2% of the remaining shares are held by the company’s employees and the remaining balance is held as treasury stock. To find out more about Pierre Fabre, please go to www.pierre-fabre.com


« Cet accord va dans le sens des récentes collaborations signées par Pierre Fabre avec des sociétés de biotechnologie et des laboratoires universitaires dans les domaines de l’oncologie et de la dermatologie, et confirme la dynamique de notre activité Recherche et développement par le biais de partenaires extérieurs », a déclaré Laurent Audoly, responsable de la R&D chez Pierre Fabre Médicament. Frédéric Duchesne, Président Directeur Général de Pierre Fabre Médicament et Santé, a ajouté : « Le savoir-faire de Pierre Fabre dans l’oncologie repose sur plus de 30 années d’expérience. Nous disposons de deux centres de recherche et développement reconnus avec des équipes dédiées qui travaillent en étroite collaboration en vue de mettre au point des médicaments pour les patients atteints de cancer. Cette nouvelle transaction renforce notre position pour participer à la révolution des biothérapies ciblées et confirme notre engagement à apporter une contribution importante pour les patients. » À propos d’Igenica Biotherapeutics Igenica Biotherapeutics est spécialisée dans la découverte et le développement d’anticorps dans le domaine de l’immuno-oncologie et d’anticorps conjugués-médicaments (ADC) pour le traitement du cancer. Cofondée en 2009 par Robert Schreiber, Ph.D*, Igenica est dirigée par une équipe confirmée de dirigeants ayant fait preuve de réussite dans la découverte, le développement clinique et la commercialisation de médicaments à base d’anticorps. *(Professeur d’Immunopathologie et de Microbiologie moléculaire à la faculté de médecine de l’université de Washington) À propos de Pierre Fabre Pierre Fabre est une société pharmaceutique et dermo-cosmétique privée française fondée en 1962 par M. Pierre Fabre. Son chiffre d’affaires, réalisé dans plus de 130 pays, a dépassé les 2,28 milliards d'euros en 2016. La société est organisée autour de deux branches : Produits pharmaceutiques (médicaments sur ordonnance, santé grand public) et Dermo-cosmétique (incluant la marque Eau Thermale Avène leader sur les marchés européen et asiatique). Pierre Fabre emploie quelque 13 000 personnes à travers le monde et possède des filiales dans 47 pays. En 2016, la société a consacré 14 % de son chiffre d'affaires dans les produits pharmaceutiques à la R&D, en mettant l'accent sur quatre domaines thérapeutiques : l'oncologie, la dermatologie, le système nerveux central et les produits de santé grand public. Les Laboratoires Pierre Fabre ont toujours développé des partenariats scientifiques durables et précieux avec des innovateurs issus d’institutions publiques de recherche (CRNS, Inserm...), de facultés et d’universités (École Polytechnique de Lausanne, Université de Saclay...), de laboratoires pharmaceutiques internationaux (Allergan, Abbvie, Maruho...) et de sociétés de biotechnologie (Array BioPharma, AbCheck, Cellectar...).


CASTRES, Francia--(BUSINESS WIRE)--Pierre Fabre, il secondo gruppo farmaceutico privato francese, ha oggi annunciato la conclusione di un accordo d'acquisto definitivo relativo a diversi asset della società biotecnologica Igenica Biotherapeutics, con sede a Burlingame, in California (Stati Uniti). L'accordo riguarda innovative immunoterapie mirate a checkpoint immunologici potenzialmente in grado di modificare in senso positivo la resistenza alle immunoterapie correntemente utilizzate. L'asset più avanzato è attualmente in fase preclinica e, secondo le previsioni, verrà somministrato ai pazienti nel corso dei prossimi 2 o 3 anni. L'accordo comprende inoltre una serie di composti tuttora nelle prime fasi di studio. Frédéric Duchesne, amministratore delegato della Divisione farmaceutica di Pierre Fabre, ha aggiunto: "Il know-how di Pierre Fabre nel settore oncologico si fonda su un'esperienza più che trentennale. Disponiamo di due rinomati centri di ricerca e sviluppo con team dedicati che lavorano a stretto contatto per sviluppare farmaci per i pazienti che convivono con i tumori. Questo nuovo accordo rafforza la nostra posizione di partecipanti alla rivoluzione delle bioterapie mirate, oltre a rafforzare il nostro impegno per l'offerta di un valore concreto ai pazienti". Informazioni su Pierre Fabre Pierre Fabre è una società farmaceutica e dermocosmetica francese a capitale privato fondata nel 1962 da Pierre Fabre. Nel 2016 il fatturato nei 130 paesi in cui opera ha superato i 2,28 miliardi di euro. La società è strutturata in due divisioni: Pharmaceuticals (farmaci con prescrizione medica e salute del consumatore) e Dermo-cosmetics (tra cui il marchio Eau Thermale Avène leader di mercato). Con Pierre Fabre, che gestisce filiali in 47 paesi, collaborano circa 13.000 persone in tutto il mondo. Nel 2016 la società ha investito il 14% del ricavato delle vendite farmaceutiche nel settore R&D, con un particolare interesse verso 4 aree terapeutiche: oncologia, dermatologia, malattie del sistema nervoso centrale (SNC) e salute del consumatore.


CASTRES, France--(BUSINESS WIRE)--Pierre Fabre, el segundo mayor grupo farmacéutico privado francés, ha anunciado la firma de un acuerdo definitivo para la adquisición de varios activos de la empresa biotecnológica Igenica Biotherapeutics, con sede en Burlingame, California (EE. UU.). El acuerdo incluye innovadoras inmunoterapias dirigidas a puntos de control inmunológicos que puedan revertir la resistencia a las inmunoterapias existentes. El activo más avanzado se encuentra en la actualidad en


CASTRES, Frankreich--(BUSINESS WIRE)--Pierre Fabre, die zweitgrößte französische private Pharmagesellschaft, meldete heute die Unterzeichnung einer definitiven Kaufvereinbarung für die Übernahme des Biotechnologieunternehmens Igenica Biotherapeutics mit Sitz in Burlingame im US-Bundesstaat Kalifornien. Der Vertrag umfasst innovative, auf Immuncheckpoints gerichtete Immuntherapien, die in der Lage sind, die Resistenz gegenüber bestehenden Immuntherapien aufzuheben. Der fortgeschrittenste Asset befindet sich gegenwärtig in der präklinischen Phase und wird voraussichtlich in den kommenden 2 bis 3 Jahren an die Patienten verabreicht werden können. Der Vertrag umfasst zudem eine Reihe von Targets für frühzeitige Entdeckungen. „Diese Vereinbarung steht in Einklang mit den jüngsten Kooperationen, die von Pierre Fabre und Biotechnologieunternehmen sowie akademischen Laboratorien in den Bereichen Onkologie und Dermatologie unterzeichnet wurden, und unterstützt unsere Forschungs- und Entwicklungdynamik durch externe Partnerschaften”, so Laurent Audoly, Head of Pierre Fabre Pharmaceuticals R&D. Über Igenica Biotherapeutics Igenica Biotherapeutics konzentriert sich auf die Entdeckung und Entwicklung von Antikörpern in der Immun-Onkologie sowie von Antikörper-Arzneistoff-Konjugaten (ADCs) zur Krebsbehandlung. Das Unternehmen fördert das ADC-Entwicklungsspektrum von einem klinisch relevanten, zielgerichteten Ansatz und der Entdeckung funktionaler Antikörper zur ADC-Bildung, um die Entwicklung und Bereitstellung wirksamer Therapien für die Patienten zu beschleunigen. Igenica wurde im Jahr 2009 von Robert Schreiber, Ph.D* mitbegründet und steht unter der Leitung eines bewährten Teams von Führungspersönlichkeiten, die in den Bereichen Antikörper-Arzneistoff-Entwicklung sowie in der klinischen Entwicklung und Vermarktung bereits großartige Erfolge nachweisen konnten. *(Alumni des Lehrstuhls: Professor of Pathology and Immunology, Professor of Molecular Microbiology, Washington University School of Medicine) Über Pierre Fabre Pierre Fabre ist ein privates französisches Pharmaunternehmen im Bereich Gesundheit und Dermokosmetik, das im Jahr 1962 von Pierre Fabre gegründet wurde. Im Jahr 2016 verzeichnete das Unternehmen einen weltweiten Umsatz von 2,28 Milliarden Euro in 130 Ländern. Das Unternehmen ist in zwei Unternehmensbereiche unterteilt: Pharmazeutika (verschreibungspflichtige Medikamente, Consumer Health Care) und Dermokosmetik (u.a. mit der Marke Eau Thermale Avène), dem Marktführer in Europa und Asien). Das Unternehmen beschäftigt rund 13.000 Mitarbeiter weltweit und unterhält Tochtergesellschaften in 47 Ländern. Im Jahr 2016 wendete Pierre Fabre 14% seiner Umsätze aus dem Arzneimittelgeschäft für die Forschung und Entwicklung auf, wobei der Forschungsschwerpunkt auf die vier Bereiche Onkologie, Dermatologie, ZNS-Erkrankungen und Consumer Health Care gelegt wird.


News Article | July 6, 2017
Site: globenewswire.com

Dublin, July 06, 2017 (GLOBE NEWSWIRE) -- Research and Markets has announced the addition of the "Biopharmaceutical Contract Manufacturing Market (2nd Edition), 2017-2027" report to their offering. The Biopharmaceutical Contract Manufacturing Market (2nd edition), 2017-2027' report provides an extensive study of the contract manufacturing market for biopharmaceuticals. As the biotechnology industry continues to strive to maximize profits, outsourcing has emerged as a promising trend. The study features in-depth analysis, highlighting capabilities of a diverse set of biopharmaceutical CMOs. One of the key focus areas of the study was to estimate size of the future opportunity for biopharmaceutical CMOs over the coming decade. In order to provide a detailed future outlook, our projections have been segmented on the basis of commonly outsourced business operations (Active Pharmaceutical Ingredients (APIs) and Finished Dosage Formulations (FDFs)), types of expression systems and key geographical regions. The base year for the report is 2017, and it provides a detailed market forecast for the period between 2017 and 2027. The research, analysis and insights presented in this report is backed by a deep understanding of insights gathered both from secondary and primary sources. For the purpose of the study, we invited more than 200 senior stakeholders in the industry to participate in a survey. This enabled us to solicit their opinions on upcoming opportunities and challenges that must be considered for a more inclusive growth. In addition, the opinions and insights presented in this study were influenced by discussions conducted with several key players in this domain. The report features detailed transcripts of interviews held with Birgit Schwab (Senior Manager Strategic Marketing, Rentschler Biotechnologie), Claire Otjes (Assistant Marketing Manager, Batavia Biosciences), David C Cunningham (Director Corporate Development, Goodwin Biotechnology), Dietmar Katinger (CEO, Polymun Scientific), Kevin Daley (Director Pharmaceuticals, Novasep Synthesis), Mark Wright (Site Head, Grangemouth, Piramal Healthcare), Raquel Fortunato (CEO, GenIbet Biopharmaceuticals), Sebastian Schuck (Head of Business Development, Wacker Biotech), Stephen Taylor (Senior Vice President Commercial, FUJIFILM Diosynth Biotechnologies) and Tim Oldham (CEO, Cell Therapies). It is worth highlighting that the biopharmaceutical market is characterized by a huge unmet need for adequate manufacturing facilities and expertise. Given the inherent complexities associated with the development of biologics, the aforementioned need is likely to translate into promising business opportunities for CMOs. In addition to other elements, it provides information on the following: - The competitive market landscape and industry analysis based on a number of parameters, such as geographical location, scale of operation, type of biologics manufactured, expression systems used, type of bioreactors used, mode of operation of bioreactors and bioprocessing capacity. - Elaborate profiles of key players that have a diverse range of capabilities for the development, manufacturing and packaging of biologics. Each profile provides an overview of the company, its financial performance, information on its manufacturing service and facilities, partnerships and recent developments. - A detailed discussion on the key enablers, including certain niche sub-segments, such as ADCs, bispecific antibodies, cell therapies, gene therapies and viral vectors, which are likely to have a significant impact on the growth of the contract services market. - A case study on the growing global biosimilars market, highlighting the opportunities for biopharmaceutical contract service providers. - A detailed capacity analysis, based on global, market wide research on the individual development and manufacturing capacities of various stakeholders in the market. The analysis takes into consideration the average capacities of small, mid-sized, large and very large CMOs, and is based on robust data collection done via both secondary and primary research. - Information on other aspects of biopharmaceutical outsourcing, which include the growing number of collaborations, partnerships and investments in facility expansions. - Affiliated trends, key drivers and challenges, under a comprehensive SWOT framework, which are likely to impact the industry's evolution. Key Topics Covered: 1. Preface 2. Executive Summary 3. Introduction 4. Competitive Landscape 5. Biopharmaceutical Contract Manufacturing In North America 6. Biopharmaceutical Contract Manufacturing In Europe 7. Biopharmaceutical Contract Manufacturing In Asia And The Rest Of The World 8. Niche Sectors In Biopharmaceutical Contract Manufacturing 9. Case Study: Outsourcing Of Biosimilars 10. Recent Developments 11. Capacity Analysis 12. Survey Analysis 13. Opportunity Analysis 14. Swot Analysis 15. Future Of The Biopharmaceutical Cmo Market 16. Interview Transcripts 17. Appendix I Tabulated Data 18. Appendix Ii List Of Companies And Organizations - 3P Biopharmaceuticals - Aalto Scientific - AbbVie Contract Manufacturing - AbGenomics - Ablynx - Abzena - ACES Pharma - Acticor Biotech - Active Biotech - Adar Biotech - ADC Therapeutics - Adimab - Advanced BioScience Laboratories (ABL) - Advanced Biotherapeutics Consulting (ABC) - Affimed - Affinity Life Sciences - Agensys - Ajinomoto Althea - Albany Molecular Research (AMRI) - Alberta Cell Therapy Manufacturing - Alcami - Aldevron - Allele Biotechnology - Alliance Medical Products - Alligator Bioscience - Allozyne - ALMAC Group - Altaris Capital Partners - AmatsiQBiologicals - AmbioPharm - Ambrx - AmBTU - AMEGA Biotech - Amgen - Amneal Life Sciences - AMSBIO - Anogen - apceth Biopharma - Applied Biological Materials - Applied Viromics - Aptuit - Arabio - Asahi Glass - Aspyrian Therapeutics - Astellas Pharma - AstraZeneca - Asymchem - Athenex Pharma Solutions - Atlantic Bio GMP - AURA Biotechnologies - AUSTRIANOVA - AutekBio - Avecia - Avid Biologics - Avid Bioservices - Bachem - Baliopharm - Batavia Biosciences - Baxter BioPharma Solutions - Bayer - BCN Peptides - Beckman Research Institute - Beijing ABT Genetic Engineering Technology - Bharat Serums And Vaccines - BIBITEC - Bicycle Therapeutics - BINEX - Bio Elpida - Bioanalytical Sciences Department, Southern Research - BioCell - Biocon - BioConnection - Biofabri - Biogen-Idec - BioLineRx - Biological and Cellular GMP Manufacturing Facility, City of Hope - Biological E - Biological Process Development Facility, University of Nebraska - BioMARC - Biomatik - Biomay - BIOMEVA - BiondVax Pharmaceuticals - BioPharmaceuticals Australia - Biosynergy - Bio-Synthesis - BioTechLogic - BioTechnique - Biotechpharma - Biotecnol - Biotest - BioVectra - Biovian - Blue Stream Laboratories - Boehringer Ingelheim - Boehringer Ingelheim BioXcellence - Brammer Bio - Bristol-Myers Squibb - Bryllan - BSP Pharmaceuticals - Cambrex - CARBOGEN AMCIS - Catalent - Catalent Biologics - Catalent Pharma Solutions - Cedarburg Pharmaceuticals - Celgene - Cell and Gene Therapy Catapult - Cell Culture Company - Cell Essentials - Cell Therapies - Cell Therapy and Regenerative Medicine, University of Utah - Celldex Therapeutics - CELLforCURE - Cellin Technologies - Cells for Sight, Stem Cell Therapy Research Unit, University College London - Celltrion - Cellular Dynamics International (a FUJIFILM company) - Cellular Therapeutics - Cellular Therapy Integrated Service, Case Western Reserve University - Celonic - Center for Biocatalysis and Bioprocessing, University of Iowa - Center for Biomedical Engineering and Advanced Manufacturing, McMaster University - Center for Cell and Gene Processing, Takara Bio - Center for Cell and Gene Therapy, Baylor College of Medicine - Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia (CHOP) - Center of iPS Cell Research and Application, Kyoto University (CiRA) - Centre for Commercialization of Regenerative Medicine - Centrose - Century Pharmaceuticals - Cerbios-Pharma - CEVEC Pharmaceuticals - Charles River Laboratories - ChemCon - Chemi Peptides - ChemPartner - Children's GMP / GMP facility St. Jude Children's Research Hospital - ChromaCon - Cincinnati Children's Hospital Medical Center - CinnaGen - Clinical Biomanufacturing Facility, University of Oxford - Clinical Research Facility, South London and Maudsley - CMC Biologics - Cobra Biologics - Cognate BioServices - Coldstream Laboratories - Concord Biotech - Concortis - Cook Pharmica - Corden Pharma - Covance - Creative Biogene - Creative Biolabs - Cryosite - CytomX Therapeutics - Cytovance Biologics - Daiichi Sankyo - Dalton Pharma Services - Dishman Group - DMBio - Dow Pharmaceutical Solutions - Dutalys - EirGenix - Eli Lilly - Embio - EMD Serono - Emergent BioSolutions - Emerson - Encap Drug Delivery - Endo Pharmaceuticals - Epigen Biotech - Esperance Pharmaceuticals - EuBiologics - EUCODIS Bioscience - EUFETS - Eurofins Central Global Laboratory - Eurogentec - Euticals - Evonik - Fabion Pharmaceuticals - Ferro Pfanstiehl - FinVector - Formation Biologics - Formosa Laboratories - Foundation BioPharma - Fraunhofer Institute for Cell Therapy and Immunology IZI - French National Centre for Scientific Research, Université de Toulouse - Frontage Laboratories - F-star - FUJIFILM Diosynth Biotechnologies - Fusimab - Fusion Antibodies - Gadea Pharmaceutical Group - Gala Biotech - Gallus BioPharmaceuticals - Ganymed Pharmaceuticals - Gates Biomanufactuirng Facility - GE Healthcare - GEG Tech - Gene and Cell Therapy Lab, Institute of Translational Health Sciences - Gene Medicine Japan / Kobe Biomedical Accelerator - Gene Transfer Vector Core (GTVC) - Gene Transfer Vector Core, Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary - Gene Transfer, Targeting and Therapeutics Core, Salk Institute for Biological Studies - Gene Vector and Virus Core, Stanford Medicine - GeneCure Biotechnologies - GeneDetect - Genentech - Genethon - GenIbet Biopharmaceuticals - Genmab - Génopoïétic - GenVec - Gilead Sciences - GIPharma - Glenmark Pharmaceuticals - Glycotope Biotechnology - GNH India - Goodwin Biotechnology - GOSH Cellular Therapy Laboratories, University College of London - GP Pharm - Grand River Aseptic Manufacturing - Great Point Partners - GreenPak Biotech - Grünenthal - GSEx, The Robinson Research Institute, University of Adelaide - GSK - GSK-Domantis - GTP Technology - Guy's and St Thomas' Facility - HALIX - Harvest Moon Pharmaceuticals - Health Biotech - Health Sciences Authority - Heidelberg Pharma - Hepalink - Hetero Drugs - Histocell - Hisun Pharmaceuticals USA - Ho Research Consortium - Hong Kong Institute of Biotechnology - Hope Center Viral Vectors Core, Washington University School of Medicine - iBIOSOURCE - Icagen - IDDI - IDT Biologika - Igenica Biotherapeutics - ImClone Systems - ImmunoGen - Immunomedics - INC Research - Indian Immunologicals - Inhibrx - Inno Biologics - Innovent Biologics - Intas Pharmaceuticals - Integrity Bio - International Joint Cancer Institute, Military Medical University - Intertek - Istituto Biochimico Italiano Giovanni Lorenzini - JHL Biotech - John Goldmann Centre for Cellular Therapy, Imperial College London - Julphar Gulf Pharmaceutical Industries - KABS Pharmaceutical Services - Kairos Therapeutics - Kamat Pharmatech - KBI Biopharma - Kemwell Biopharma - Laboratory for Cell and Gene Medicine, Stanford University - LAMPIRE Biological Laboratories - Lentigen Technology (wholly owned subsidiary of Miltenyi Biotec) - LFB BIOMANUFACTURING - Lindis Biotech - Lonza - LuinaBio - MabPlex - MacroGenics - Maine Biotechnology Services - MassBiologics - MaSTherCell - MBI International - MediaPharma - MedImmune - Medix Biochemica - Menarini Biotech - Merck - Meridian Life Science - Merrimack - Merro Pharmaceutical - Mersana Therapeutics - Merus - MGH Vector Core (Massachusetts General Hospital Neuroscience Center) - MicroBiopharm Japan - Microbix Biosystems - Millennium Pharmaceuticals - Minomic International - Mitsubishi Gas Chemical Company - Moderna Therapeutics - Molecular and Cellular Therapeutics, University of Minnesota - Molecular Partners - MolMed - MPI Research - Multispan - Mycenax Biotech - Nantes Gene Therapy Institute - Nascent Biologics - National Cancer Institute (NCI) - National Research Council of Canada - NBE Therapeutics - Neuland Laboratories - NeuroCure (Viral Core Facility) - NeuroFx - Newcastle Cellular Therapies, University of Newcastle - NextCell - NHS Blood and Transplant - NHSBT Birmingham - Nikon Cell And Gene Therapy Contract Manufacturing - Nitto Avecia Pharma Services - Nordic Nanovector - Norwegian Institute of Public Health - Nova Laboratories - Novartis - Novasep - Novex Innovations - NovImmune - Numab - Oasmia Pharmaceutical - OcellO - OctoPlus - Okairos (GSK subsidiary) - Olon - Omnia Biologics - OncoMed - OncoQuest - OsoBio - OXB Solutions (a business of Oxford BioMedica) - Oxford BioMedica - Oxford BioTherapeutics - Oxford Genetics - Pacific GMP - Paktis Antibody Services - Palatin Technologies - Pamlico BioPharma - Panacea Biotec - Paragon Bioservices - Parexel - Particle Sciences - PATH - Patheon - PCI Services (Biotec Services International) - PCT, a Caladrius company - Penn Vector Core, University of Pennsylvania - Pfizer - Pfizer CentreOne - PharmAbcine - PharmaBio - PharmaCell - Pharmedartis - PharmiCell - Philip S Orsino Facility for Cell Therapy, Princess Margaret Hospital - Philochem - PhotoBiotics - Pierre Fabre - Piramal Pharma Solutions - PlasmidFactory - Polymun Scientific - Polypeptide Group - Praxis Pharmaceutical - Precision Antibody - Precision Biologics - PREMAS Biotech - ProBioGen - Productos Bio-Logicos - Profectus BioSciences - Progenics Pharmaceuticals - ProJect Pharmaceutics - ProMab Biotechnologies - Protheragen - Provantage End-to-End Services (Merck Millipore) - PX'Therapeutics - Pyramid Labs - Quintiles - Raymond G Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia - Rayne's Cell Therapy Suite, King's College London - Receptor Logic - Redwood Bioscience - Regeneron Pharmaceuticals - Reliance Life Sciences - Rentschler Biotechnologie - Research and Development Center for Cell Therapy, Foundation for Biomedical Research and Innovation - Richter-Helm BioLogics - Rimedion - Robertson Clinical and Translational Cell Therapy, Duke University - Roche - Roslin Cell Therapies - Roswell Park Cancer Institute - Royal DSM - Royal Free, CCGTT - SAB Technology - SAFC - Samsung BioLogics - Sandoz - Sanofi, CEPiA (Commercial & External Partnership, Industrial Affairs) - Sanofi-Aventis - Sanquin Pharmaceutical Services - School of Medicine, University of Utah - Scientific Protein Laboratories - Sea Lane Biotechnologies - Seattle Genetics - Selexys Pharmaceuticals - Senn Chemicals - SGS Life Science Services - Shire - SignaGen Laboratories - Singota Solutions - Sirion Biotech - SNBTS Cellular Therapy Facility - Societa Italiana Corticosteroidi - Sorrento Therapeutics - Spirogen - ST Pharm - Stem CentRx - Sutro Biopharma - Sydney Cell and Gene Therapy - Symbiosis Pharmaceutical Services - Symbiosis, the Analytical Company - SynCo Bio Partners - Synergys Biotherapeutics - Syngene - SYNIMMUNE - Synthon - Sypharma - System Biosciences - Takara Bio - Takeda - The Chemistry Research Solution - The Lentiviral Laboratory, USC School of Pharmacy - The Native Antigen Company - The Vector Core, University of North Carolina - Therapure Biopharma (Therapure Biomanufacturing) - THERAVECTYS - Thermo Fisher Scientific - Toyobo Biologics - Translational Sciences - TranXenoGen - Trenzyme - Trion Pharma - Triphase Accelerator Corporation - UC Davis GMP Laboratory - UCB-Celltech - UCLA Human Gene and Cell Therapy - UMN Pharma - University of Alabama Fermentation Facility - University of Manchester - University of Oxford Clinical BioManufacturing Facility - University of Texas - Upstate Stem Cell cGMP Facility, University of Rochester - Valerion Therapeutics - Valneva - Vectalys - Vector Biolabs - Vector Core / GMP Facility, UC Davis - Vector Core Lab / Human Applications Lab, Powell Gene Therapy Center, University of Florida - Vector Core of Gene Therapy Laboratory of Nantes - Vector Production Facility, Indiana University - Vecura (Karolinska University Hospital ) - Vetter Pharma International - VGXI - Vibalogics - Vigene Biosciences - Viral Vector Core / Clinical Manufacturing Facility, Nationwide Children's Hospital - Viral Vector Core, Duke University - Viral Vector Core, Sanford Burnham Prebys Medical Discovery Institute - Viral Vector Core, University of Iowa Carver College of Medicine - Viral Vector Core, University of Massachusetts Medical School (UMMS) - Virovek - Vista Biologicals - VIVEbioTECH - Wacker Biotech - Waisman Biomanufacturing - WIL Research - Wockhardt - Wolfson Gene Therapy Unit, University College of London - WuXi AppTec - Wyeth - X-BODY Biosciences - Xellbiogene - Xencor - YposKesi - Zhejiang HISUN Pharmaceuticals - Zhengyang Gene Technology - Zumutor Biologics - Zydus Cadila - Zymeworks - ZymoGenetics - Zyngenia For more information about this report visit https://www.researchandmarkets.com/research/m9qmm2/biopharmaceutical


— Chronic Lymphocytic Leukemia (CLL) Pipeline Market Companies Involved in Therapeutics Development are 4SC AG, AbbVie Inc, Acetylon Pharmaceuticals Inc, Aeglea BioTherapeutics Inc, Altor BioScience Corp, Amgen Inc, Aprea AB, Aptevo Therapeutics Inc, Arno Therapeutics Inc, ArQule Inc, Astellas Pharma Inc, Astex Pharmaceuticals Inc, Baliopharm AG, Bayer AG, BeiGene Ltd, Bellicum Pharmaceuticals Inc, Biogen Inc, Bionomics Ltd, Bionovis SA, Biothera Pharmaceutical Inc, Boehringer Ingelheim GmbH, Bristol-Myers Squibb Company, Celgene Corp, Cellectis SA, Cellular Biomedicine Group Inc, Coherus BioSciences Inc, CrystalGenomics Inc, Cyclacel Pharmaceuticals Inc, Daiichi Sankyo Company Ltd, Eli Lilly and Company, F. Hoffmann-La Roche Ltd, GeneaMed Ltd, Genentech Inc, Genor BioPharma Co Ltd, Gilead Sciences Inc, Grupo Ferrer Internacional SA, Hutchison MediPharma Ltd, Hybrigenics SA, Igenica Biotherapeutics Inc, Immatics Biotechnologies GmbH, ImmunoGen Inc, Immunomedics Inc, Incyte Corp, Inflection Biosciences Ltd, Innate Pharma SA, Innovent Biologics Inc, Johnson & Johnson, Juno Therapeutics Inc, Kancera AB, Karyopharm Therapeutics Inc, Kite Pharma Inc, Les Laboratoires Servier SAS, LFB SA, Lymphocyte Activation Technologies SA, Medicenna Therapeutics Inc, MENTRIK Biotech LLC, Merck & Co Inc, Merck KGaA, Mesoblast Ltd, Millennium Pharmaceuticals Inc, MorphoSys AG, NantKwest Inc, Nordic Nanovector ASA, Novartis AG, Oncternal Therapeutics, Inc., Ono Pharmaceutical Co Ltd, Panacea Biotec Ltd, PEP-Therapy SAS, Pfizer Inc, Pharmacyclics Inc, PIQUR Therapeutics AG, Portola Pharmaceuticals Inc, Redx Pharma Plc, Respiratorius AB, Revitope Oncology, Inc., Rhizen Pharmaceuticals SA, Sandoz International GmbH, Sanofi, Selvita SA, Simcere Pharmaceutical Group, Sorrento Therapeutics Inc, Supratek Pharma Inc, Takeda Pharmaceutical Company Ltd, Targazyme Inc, TG Therapeutics Inc, The International Biotechnology Center (IBC) Generium, Theravectys SA, Tolero Pharmaceuticals Inc, TRACON Pharmaceuticals Inc, Tragara Pharmaceuticals Inc, Trillium Therapeutics Inc, United BioPharma, Inc., Unum Therapeutics Inc, Verastem Inc, VioQuest Pharmaceuticals Inc, Viralytics Ltd, Xencor Inc, ZIOPHARM Oncology Inc and Zymeworks Inc. This research provides comprehensive information on the therapeutics under development for Chronic Lymphocytic Leukemia (CLL) (Oncology), complete with analysis by stage of development, drug target, mechanism of action (MoA), route of administration (RoA) and molecule type. The guide covers the descriptive pharmacological action of the therapeutics, its complete research and development history and latest news and press releases. Inquire more about this research report at http://www.reportsnreports.com/contacts/inquirybeforebuy.aspx?name=774108 The Chronic Lymphocytic Leukemia (CLL) (Oncology) pipeline guide also reviews of key players involved in therapeutic development for Chronic Lymphocytic Leukemia (CLL) and features dormant and discontinued projects. The guide covers therapeutics under Development by Companies /Universities /Institutes, the molecules developed by Companies in Pre-Registration, Phase III, Phase II, Phase I, Phase 0, IND/CTA Filed, Preclinical, Discovery and Unknown stages are 5, 5, 43, 45, 1, 3, 54, 13 and 1 respectively. Similarly, the Universities portfolio in Phase II, Phase I, Preclinical and Discovery stages comprises 4, 6, 8 and 7 molecules, respectively. Chronic Lymphocytic Leukemia (CLL) (Oncology) pipeline guide helps in identifying and tracking emerging players in the market and their portfolios, enhances decision making capabilities and helps to create effective counter strategies to gain competitive advantage. The guide is built using data and information sourced from Global Markets Directs proprietary databases, company/university websites, clinical trial registries, conferences, SEC filings, investor presentations and featured press releases from company/university sites and industry-specific third party sources. Additionally, various dynamic tracking processes ensure that the most recent developments are captured on a real time basis. Note: Certain content / sections in the pipeline guide may be removed or altered based on the availability and relevance of data. Buy a copy of this research report at http://www.reportsnreports.com/purchase.aspx?name=774108 • The pipeline guide provides a snapshot of the global therapeutic landscape of Chronic Lymphocytic Leukemia (CLL) (Oncology). • The pipeline guide reviews pipeline therapeutics for Chronic Lymphocytic Leukemia (CLL) (Oncology) by companies and universities/research institutes based on information derived from company and industry-specific sources. • The pipeline guide covers pipeline products based on several stages of development ranging from pre-registration till discovery and undisclosed stages. • The pipeline guide features descriptive drug profiles for the pipeline products which comprise, product description, descriptive licensing and collaboration details, R&D brief, MoA & other developmental activities. • The pipeline guide reviews key companies involved in Chronic Lymphocytic Leukemia (CLL) (Oncology) therapeutics and enlists all their major and minor projects. • The pipeline guide evaluates Chronic Lymphocytic Leukemia (CLL) (Oncology) therapeutics based on mechanism of action (MoA), drug target, route of administration (RoA) and molecule type. • The pipeline guide encapsulates all the dormant and discontinued pipeline projects. • The pipeline guide reviews latest news related to pipeline therapeutics for Chronic Lymphocytic Leukemia (CLL) (Oncology) • Procure strategically important competitor information, analysis, and insights to formulate effective R&D strategies. • Recognize emerging players with potentially strong product portfolio and create effective counter-strategies to gain competitive advantage. • Find and recognize significant and varied types of therapeutics under development for Chronic Lymphocytic Leukemia (CLL) (Oncology). • Classify potential new clients or partners in the target demographic. • Develop tactical initiatives by understanding the focus areas of leading companies. • Plan mergers and acquisitions meritoriously by identifying key players and it’s most promising pipeline therapeutics. • Formulate corrective measures for pipeline projects by understanding Chronic Lymphocytic Leukemia (CLL) (Oncology) pipeline depth and focus of Indication therapeutics. • Develop and design in-licensing and out-licensing strategies by identifying prospective partners with the most attractive projects to enhance and expand business potential and scope. • Adjust the therapeutic portfolio by recognizing discontinued projects and understand from the know-how what drove them from pipeline. For more information, please visit http://www.reportsnreports.com/reports/774108-chronic-lymphocytic-leukemia-cll-pipeline-review-h2-2016.html


News Article | October 27, 2016
Site: www.eurekalert.org

Acute myeloid leukemia (AML) is an aggressive cancer known for drug resistance and relapse. In an effort to uncover new treatment strategies, researchers at University of California San Diego School of Medicine and Moores Cancer Center discovered that a cell surface molecule known as CD98 promotes AML. The study, published October 27 by Cancer Cell, also shows that inhibiting CD98 with the therapeutic antibody IGN523 blocks AML growth in patient-derived cells and mouse models. "To improve therapeutic strategies for this disease, we need to look not just at the cancer cells themselves, but also at their interactions with surrounding cells, tissues, molecules and blood vessels in the body," said co-senior author Tannishtha Reya, PhD, professor of pharmacology at UC San Diego School of Medicine and Moores Cancer Center. "In this study, we identified CD98 as a critical molecule driving AML growth. We showed that blocking CD98 can effectively reduce leukemia burden and improve survival by preventing cancer cells from receiving support from the surrounding environment." Reya led the study together with Mark Ginsberg, MD, professor of medicine at UC San Diego School of Medicine and Moores Cancer Center. Co-author Edward van der Horst, PhD, senior director at Igenica Biotherapeutics Inc., provided the anti-CD98 antibody IGN523. AML is a type of cancer in which the bone marrow makes abnormal white blood cells, red blood cells or platelets. Reya's team and others have previously shown that leukemia cells interact with their surroundings in the body via molecules on their cell surfaces, and that these interactions can help the cancer cells divide, replicate and metastasize. CD98 is a molecule found on the surface of cells, where it controls how cells stick to one another. CD98 is known to play a role in the proliferation and activation of certain immune cells. CD98 levels are also known to be elevated in some solid tumors, and linked to poor prognosis. To determine CD98's role in AML, in this latest study Reya's team engineered mouse models that lack the molecule. They found that the loss of CD98 blocked AML growth and improved survival. CD98 loss largely spared normal blood cells, which the researchers said indicates a potential therapeutic window. Further experiments revealed that leukemia cells lacking CD98 had fewer stable interactions with the lining of blood vessels -- interactions that were needed to fuel AML growth. Next, the researchers wanted to see what would happen if they blocked CD98 in AML with a deliverable inhibitor. In 2015, Igenica Biotherapeutics Inc. tested IGN523, a humanized antibody that specifically binds and inhibits CD98, in a phase 1 clinical trial at Moores Cancer Center and elsewhere. The trial's goal was to determine a safe dose for IGN523 administration in AML patients. In this study, Reya and team tested IGN523 in their own AML models. The researchers found that IGN523 blocks CD98's AML-promoting activity in both mouse models of AML and human cells in the laboratory. They also transplanted human patient-derived AML cells into mice and treated the recipients soon after with either IGN523, the anti-CD98 antibody, or with a control antibody. Anti-CD98-treatment effectively eliminated AML cells. In contrast, AML in control mice expanded more than 100-fold. "This study suggests that human AML can't get established without CD98, and that blocking the molecule with anti-CD98 antibodies could be beneficial for the treatment of AML in both adults and children," Reya said. Moving forward, Reya and team are working to further define whether CD98 could be targeted to treat pediatric AML. "Many of the models we used in this work were based on mutations found in childhood AML," she said. "While many childhood cancers have become very treatable, childhood AML continues to have a high rate of relapse and death. We plan to work with pediatric oncologists to test if anti-CD98 agents can be effective against pediatric AML, and whether it can improve responses to current treatments. I think this is particularly important to pursue since the anti-CD98 antibody has already been through phase I trials, and could be more easily positioned to test in drug-resistant pediatric AML." The American Cancer Society estimates that there will be about 19,950 new cases of AML and about 10,430 deaths from the disease in the United States in 2016, mostly adults. Approximately 500 children are diagnosed with AML in the U.S. each year, and it's the most common second cancer among children treated for other cancers, according to St. Jude Children's Research Hospital.


News Article | October 29, 2016
Site: www.sciencedaily.com

Acute myeloid leukemia (AML) is an aggressive cancer known for drug resistance and relapse. In an effort to uncover new treatment strategies, researchers at University of California San Diego School of Medicine and Moores Cancer Center discovered that a cell surface molecule known as CD98 promotes AML. The study, published October 27 by Cancer Cell, also shows that inhibiting CD98 with the therapeutic antibody IGN523 blocks AML growth in patient-derived cells and mouse models. "To improve therapeutic strategies for this disease, we need to look not just at the cancer cells themselves, but also at their interactions with surrounding cells, tissues, molecules and blood vessels in the body," said co-senior author Tannishtha Reya, PhD, professor of pharmacology at UC San Diego School of Medicine and Moores Cancer Center. "In this study, we identified CD98 as a critical molecule driving AML growth. We showed that blocking CD98 can effectively reduce leukemia burden and improve survival by preventing cancer cells from receiving support from the surrounding environment." Reya led the study together with Mark Ginsberg, MD, professor of medicine at UC San Diego School of Medicine and Moores Cancer Center. Co-author Edward van der Horst, PhD, senior director at Igenica Biotherapeutics Inc., provided the anti-CD98 antibody IGN523. AML is a type of cancer in which the bone marrow makes abnormal white blood cells, red blood cells or platelets. Reya's team and others have previously shown that leukemia cells interact with their surroundings in the body via molecules on their cell surfaces, and that these interactions can help the cancer cells divide, replicate and metastasize. CD98 is a molecule found on the surface of cells, where it controls how cells stick to one another. CD98 is known to play a role in the proliferation and activation of certain immune cells. CD98 levels are also known to be elevated in some solid tumors, and linked to poor prognosis. To determine CD98's role in AML, in this latest study Reya's team engineered mouse models that lack the molecule. They found that the loss of CD98 blocked AML growth and improved survival. CD98 loss largely spared normal blood cells, which the researchers said indicates a potential therapeutic window. Further experiments revealed that leukemia cells lacking CD98 had fewer stable interactions with the lining of blood vessels -- interactions that were needed to fuel AML growth. Next, the researchers wanted to see what would happen if they blocked CD98 in AML with a deliverable inhibitor. In 2015, Igenica Biotherapeutics Inc. tested IGN523, a humanized antibody that specifically binds and inhibits CD98, in a phase 1 clinical trial at Moores Cancer Center and elsewhere. The trial's goal was to determine a safe dose for IGN523 administration in AML patients. In this study, Reya and team tested IGN523 in their own AML models. The researchers found that IGN523 blocks CD98's AML-promoting activity in both mouse models of AML and human cells in the laboratory. They also transplanted human patient-derived AML cells into mice and treated the recipients soon after with either IGN523, the anti-CD98 antibody, or with a control antibody. Anti-CD98-treatment effectively eliminated AML cells. In contrast, AML in control mice expanded more than 100-fold. "This study suggests that human AML can't get established without CD98, and that blocking the molecule with anti-CD98 antibodies could be beneficial for the treatment of AML in both adults and children," Reya said. Moving forward, Reya and team are working to further define whether CD98 could be targeted to treat pediatric AML. "Many of the models we used in this work were based on mutations found in childhood AML," she said. "While many childhood cancers have become very treatable, childhood AML continues to have a high rate of relapse and death. We plan to work with pediatric oncologists to test if anti-CD98 agents can be effective against pediatric AML, and whether it can improve responses to current treatments. I think this is particularly important to pursue since the anti-CD98 antibody has already been through phase I trials, and could be more easily positioned to test in drug-resistant pediatric AML." The American Cancer Society estimates that there will be about 19,950 new cases of AML and about 10,430 deaths from the disease in the United States in 2016, mostly adults. Approximately 500 children are diagnosed with AML in the U.S. each year, and it's the most common second cancer among children treated for other cancers, according to St. Jude Children's Research Hospital.

Loading Igenica Biotherapeutics collaborators
Loading Igenica Biotherapeutics collaborators