Time filter

Source Type

Stumpp C.,Helmholtz Center for Environmental Research | Ekdal A.,Technical University of Istanbul | Gonenc I.E.,IGEM Research and Consulting Co. | Maloszewski P.,Helmholtz Center for Environmental Research
Hydrology and Earth System Sciences | Year: 2014

Lagoons are important ecosystems occupying large coastal areas worldwide. Lagoons contain various mixtures of marine and freshwater sources which are highly dynamic in time. However, it often remains a challenge to identify and quantify dynamic changes of water sources, particularly in heterogeneous lagoon systems like the Köycegiz-Dalyan lagoon (KDL), which is located at the south-west of Turkey on the Mediterranean Sea coast. The objective of this study was to quantify different contributions of potential water sources i.e. surface water, groundwater and seawater in the lagoon and how these water sources changed over time and space. In the wet- and dry-season stable isotopes of water, chloride concentration (Cl-) and salinity were measured in two depths in the lagoon and surrounding water bodies (sea, lake, groundwater). Different components of water sources were quantified with a three component endmember mixing analysis. Differences in Cl- and stable isotopes over time indicated the dynamic behaviour of the system. Generally, none of the groundwater samples was impacted by water of the Mediterranean Sea. During the wet season, most of the lagoon water (> 95%) was influenced by freshwater and vertically well mixed. During the dry season, high Cl- in the deeper sampling locations indicated a high contribution of marine water throughout the entire lagoon system due to saltwater intrusion. However, a distinct layering in the lagoon was obvious from low Cl- and depleted isotope contents close to the surface supporting freshwater inflow into the system even during the dry season. Besides temporal dynamics also spatial heterogeneities were identified. Changes in water sources were most evident in the main lagoon channel compared to more isolate lagoon lakes, which were influenced by marine water even in the wet season, and compared to side branches indicating slower turnover times. We found that environmental tracers helped to quantify highly dynamic and heterogeneous contributions of different water sources in the Köycegiz-Dalyan lagoon. Source

Ertu rk A.,Istanbul University | Ekdal A.,Technical University of Istanbul | Gu rel M.,Technical University of Istanbul | Karakaya N.,Abant Izzet Baysal University | And 2 more authors.
Science of the Total Environment | Year: 2014

Western Mediterranean Region of Turkey is subject to considerable impacts of climate change that may adversely affect the water resources. Decrease in annual precipitation and winter precipitation as well as increase in temperatures are observed since 1960s. In this study, the impact of climate change on groundwater resources in part of Ko¨ycegˇiz-Dalyan Watershed was evaluated. Evaluation was done by quantifying the impacts of climate change on the water budget components. Hydrological modeling was conducted with SWAT model which was calibrated and validated successfully. Climate change and land use scenarios were used to calculate the present and future climate change impacts on water budgets. According to the simulation results, almost all water budget components have decreased. SWAT was able to allocate less irrigation water because of the decrease of overall water due to the climate change. This resulted in an increase of water stressed days and temperature stressed days whereas crop yields have decreased according to the simulation results. The results indicated that lack of water is expected to be a problem in the future. In this manner, investigations on switching to more efficient irrigation methods and to crops with less water consumption are recommended as adaptation measures to climate change impacts. © 2014 Elsevier B.V. Source

Discover hidden collaborations