Time filter

Source Type


Agency: Cordis | Branch: FP7 | Program: CP-FP | Phase: HEALTH.2012.1.4-4 | Award Amount: 7.73M | Year: 2012

Age-related Macular Degeneration (AMD), a neurodegenerative disease of the retina, is a major cause of blindness in elderly people. Due to the aging population, AMD has been referred to as a time bomb in society. In the exudative form of AMD, high levels of vascular endothelial cell growth factor (VEGF) and low levels of pigment-epithelial derived factor (PEDF), an inhibitor of vascularization and a neuroprotective factor produced by retinal pigment epithelial (RPE) cells result in subretinal neovascularization and retinal pigment cell degeneration. The current treatment by monthly injections of anti-VEGF antibodies is only effective for ~30% of patients. To avoid the severe side effects, high costs and the overall continuing burden on health care associated with monthly antibody injections, inducing a higher level of PEDF expression to inhibit neovascularization would be a viable therapeutic alternative. TargetAMD will subretinally transplant genetically modified, patient-derived, iris- or RPE cells that overexpress PEDF to provide a long-lasting cure of AMD. Stable PEDF gene delivery will be based on the non-viral Sleeping Beauty transposon system, which combines the efficacy of viral delivery with the safety of naked DNA plasmids. Academic scientists and SME partners will produce innovative gene delivery technologies, reagents and devices to be translated into a simple and safe gene therapeutic treatment for exudative AMD. Experienced clinicians will perform two clinical trials, comprising isolation and PEDF-transfection of a patients pigment epithelial cells and implantation of transfected cells into the patient during a single, 60-minute surgical session. This project will bring a significant enhancement on quality of life to AMD patients, highlight the synergistic power of academic, clinical and industrial cooperation to the scientific arena, and open new markets for novel products for clinical applications of transposon-based gene therapy to industry.

Discover hidden collaborations