Time filter

Source Type

Lauzacco, Italy

Yin X.-W.,University of Pisa | Yin X.-W.,China Agricultural University | Iovinella I.,University of Pisa | Marangoni R.,University of Pisa | And 6 more authors.
Cellular and Molecular Life Sciences

Solitary bees are major pollinators but their chemical communication system has been poorly studied. We investigated olfactory coding in Osmia cornuta from two perspectives, chemical and biochemical. We identified (E)-geranyl acetone and 2-hexyl-1,3-dioxolane, specifically secreted by females and males, respectively. A transcriptome analysis of antennae revealed 48 ORs (olfactory receptors), six OBPs (odorant-binding proteins), five CSPs (chemosensory proteins), and a single SNMP (sensory neuron membrane protein). The numbers of ORs and OBPs are much lower than in the honeybee, in particular, C-minus OBPs are lacking in the antennae of O. cornuta. We have expressed all six OBPs of O. cornuta and studied their binding specificities. The best ligands are common terpene plant odorants and both volatiles produced by the bee and identified in this work. © 2013 Springer Basel. Source

Baratti M.,National Research Council Italy | Cattonaro F.,IGA Technology Services Srl | Di Lorenzo T.,National Research Council Italy | Galassi D.M.P.,University of LAquila | And 16 more authors.
Molecular Ecology Resources

This article documents the public availability of (i) RAD sequencing data and validated SNPs for the American mink Neovison vison and (ii) Transcriptome resources for two nonmodel freshwater crustacean species, the copepod Eucyclops serrulatus and the amphipod Echinogammarus veneris. © 2015 John Wiley & Sons Ltd. Source

Pinosio S.,National Research Council Italy | Pinosio S.,IGA Technology Services Srl | Gonzalez-Martinez S.C.,National Institute for Agriculture and Food Research and Technology INIA | Gonzalez-Martinez S.C.,University of Lausanne | And 6 more authors.
Molecular Ecology Resources

Aleppo pine (Pinus halepensis Mill.) is a relevant conifer species for studying adaptive responses to drought and fire regimes in the Mediterranean region. In this study, we performed Illumina next-generation sequencing of two phenotypically divergent Aleppo pine accessions with the aims of (i) characterizing the transcriptome through Illumina RNA-Seq on trees phenotypically divergent for adaptive traits linked to fire adaptation and drought, (ii) performing a functional annotation of the assembled transcriptome, (iii) identifying genes with accelerated evolutionary rates, (iv) studying the expression levels of the annotated genes and (v) developing gene-based markers for population genomic and association genetic studies. The assembled transcriptome consisted of 48 629 contigs and covered about 54.6 Mbp. The comparison of Aleppo pine transcripts to Picea sitchensis protein-coding sequences resulted in the detection of 34 014 SNPs across species, with a Ka/Ks average value of 0.216, suggesting that the majority of the assembled genes are under negative selection. Several genes were differentially expressed across the two pine accessions with contrasted phenotypes, including a glutathione-s-transferase, a cellulose synthase and a cobra-like protein. A large number of new markers (3334 amplifiable SSRs and 28 236 SNPs) have been identified which should facilitate future population genomics and association genetics in this species. A 384-SNP Oligo Pool Assay for genotyping with the Illumina VeraCode technology has been designed which showed an high overall SNP conversion rate (76.6%). Our results showed that Illumina next-generation sequencing is a valuable technology to obtain an extensive overview on whole transcriptomes of nonmodel species with large genomes. © 2014 John Wiley & Sons Ltd. Source

Guiatti D.,University of Udine | Pomari E.,University of Udine | Radovic S.,IGA Technology Services Srl | Spadotto A.,IGA Technology Services Srl | Stefanon B.,University of Udine

The discovery of new protein-coding DNA variants related to carcass traits is very important for the Italian pig industry, which requires heavy pigs with higher thickness of subcutaneous fat for Protected Designation of Origin (PDO) productions. Exome capture techniques offer the opportunity to focus on the regions of DNA potentially related to the gene and protein expression. In this research a human commercial target enrichment kit was used to evaluate its performances for pig exome capture and for the identification of DNA variants suitable for comparative analysis. Two pools of 30 pigs each, crosses of Italian Duroc X Large White (DU) and Commercial hybrid X Large White (HY), were used and NGS libraries were prepared with the SureSelectXT Target Enrichment System for Illumina Paired-End Sequencing Library (Agilent). A total of 140.2 M and 162.5 M of raw reads were generated for DU and HY, respectively. Average coverage of all the exonic regions for Sus scrofa (ENSEMBL Sus-scrofa.Sscrofa10.2.73.gtf) was 89.33X for DU and 97.56X for HY; and 35% of aligned bases uniquely mapped to off-target regions. Comparison of sequencing data with the Sscrofa10.2 reference genome, after applying hard filtering criteria, revealed a total of 232,530 single nucleotide variants (SNVs) of which 20.6%mapped in exonic regions and 49.5% within intronic regions. The comparison of allele frequencies of 213 randomly selected SNVs from exome sequencing and the same SNVs analyzed with a Sequenom MassARRAY1 system confirms that this "human-on-pig" approach offers new potentiality for the identification of DNA variants in protein-coding genes. Copyright: © 2015 Guiatti et al. Source

Discover hidden collaborations